• Title/Summary/Keyword: Discontinuous model

Search Result 295, Processing Time 0.026 seconds

Effect of Degradation of Rock Mass Properties Caused by Water Pressure on the Stability of Mine Gallery (수압에 의한 암반의 물성 저하가 갱도의 안정성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.138-144
    • /
    • 2011
  • Mine closure does often accompany the flooding of mine galleries due to ceasing a pumping operation. When a mine gallery is flooded, rocks around the gallery are fully saturated and the gallery is subject to a water pressure. The uniaxial unconfined compressive strength of a rock depends on its water content and decreases as the water content increases. A water pressure may originate the crack growth of a rock or the discontinuity growth of rock mass. Although the water in a gallery will give some support pressure inside the gallery, the degradation of rock mass properties caused by a water pressure will reduce the stability of the gallery. In this study, 2-dimensional discontinuous and 3-dimensional continuous numerical analyses have been conducted to evaluate an effect that a reduction of rock mass properties around the gallery induced by a water pressure has on the stability of mine gallery. The numerical analyses show that a reduction of rock mass properties caused by a water pressure increases displacements of rock mass around mine gallery. 2-dimensional model is found to give larger values of displacement than 3-dimensional model.

Evaluation of Ductility Capacity of Reinforced Concrete Bridge Columns Subject to Cyclic Loading Using Flexibility-Based Fiber Element Method (유연도법 섬유요소모델에 의한 반복하중을 받는 철근콘크리트 교각의 연성능력 평가)

  • 고현무;조근희;조호현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.11-21
    • /
    • 2002
  • The evaluation of displacement ductility is performed by direct method through tracking the inelastic hysteretic behavior of RC bridge columns subject to cyclic loading using a flexibility-based fiber element mode. To reasonably track the inelastic behavior until the RC bridge column reaches its ultimate state, the average stress-average strain relations and joint elements, which agree well with experiments, are modified and applied considering the tension stiffening behavior and discontinuous displacement between the column and its base. In addition the evaluation of displacement ductility is performed by a direct method easily applicable to numerical analysis. Locations for the integration points, values for the post-crushing concrete strength and low-cycle fatigue failure of longitudinal reinforcement that affect the calculation of yielding and ultimate displacements are proposed for the application to flexibility-based fiber element model. Since less than 10% of error occurs during the displacement ductility analysis, the yielding and ultimate displacements evaluated by the applied analysis method and model appear to be valid.

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Thermohydromechanical Stability Study on the Joint Characteristics and Depth Variations in the Region of an Underground Radwaste Repository (절리 발달 특성 및 심도 변화에 의한 방사성폐기물 처분장 주변영역에서의 열수리역학적 안정성 연구)

  • Kim, Jhinwung;Daeseok Bae;Park, Chongwon
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.153-168
    • /
    • 2003
  • The objective of this present study is to understand long term(500 years) thermohydromechanical interaction behavior in the vicinity of a repository cavern on the joint location and repository depth variations. The model includes a saturated discontinuous granitic rock mass, PWR spent nuclear fuel in a disposal canister surrounded with compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within the model. Joint set 1 includes joints of 56$^{\circ}$ dip angle, spaced at 20 m, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of 34$^{\circ}$ dip angle, spaced at 20 m. In order to understand the behavior change on the joint location variations, 5 different models of 500m in depth are analyzed, and additional 3 different models of 1000 m in depth are analyzed to understand the effect of depth variation.

Crack Propagation and Coalescence in Yeosan Marble under Uniaxial Compression (단축압축 하에서 대리석의 균열전파 및 결합)

  • 박남수;전석원
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.217-224
    • /
    • 2001
  • Rock masses are usually discontinuous in nature due to various geological processes and contain rock joints and bridges. Crack propagation and coalescence processes in rock bridge mainly cause rock failures in slopes, foundations, and tunnels. In this study, we focused on the crack initiation, propagation and coalescence process of rock materials containing two pre-existing open cracks arranged in different geometries. Specimens of 120${\times}$60${\times}$25 mm in size, which were made of Yeoman Marble, were prepared. In the specimens, two artificial cracks were cut with pre-existing crack angle ${\alpha}$, bridge angle ${\beta}$, pre-existing crack length 2c and bridge length 2b. Wing crack initiation stress, wing crack propagation angle, and crack coalescence stress were measured and crack initiation, propagation and coalescence processes were observed during uniaxial compression. Crack coalescence types were classified and analytical study using Ashby and Hallam model (1986) was performed to be compared with the experimental results.

  • PDF

A Study on the Development of the Position Detection System of Small Vessels for Collision Avoidance (충돌 회피를 위한 소형 선박의 위치 검출 시스템 개발에 관한 연구)

  • Le, Dang-Khanh;Nam, Teak-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.202-209
    • /
    • 2014
  • In this paper, a developed device for detecting target's location and avoiding collision is proposed. Velocity and acceleration model of target are derived to estimate target's information, i.e. position, velocity and acceleration considering process and measurement noise. Kalman filtering method applied to the estimation process and its results was confirmed by simulation. The distance measurements system using laser sensor for moving target system is also developed to confirm the effectiveness of the proposed scheme. Experiments to get information of moving target with velocity and acceleration model was executed. The data with filtering and without filtering was compared by experiments. Discontinuous measured data was changed to smooth and continuous data by Kalman filtering. It is confirmed that desired data was obtained by applying proposed scheme. UI for measuring and monitoring the target data is developed and visual and auditory alarm function is attached on the system Finally, position estimation system of moving target with good performance is achieved by low price equipments.

Finite Element Anmllysis of Adiabatic Shear Band (단열 전단 밴드의 유한요소 해석)

  • 유요한;전기영;정동택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1519-1529
    • /
    • 1992
  • A stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element code. The material model for specimen includes effects of thermal softening, strain hardening and strain rate hardening. Various mesh sizes are tested to check whether they are small enough to model highly localized discontinuous phenomena reasonably well. It is shown that the number of adiabatic shear band depends on impact velocity and it is also shown that the initiation and growth of adiabatic shear band inversely depends on prescribed velocity at the top of specimen.

Design and Analysis of a Battery Charge and Discharge Regulator of Communication Satellite (통신위성 배터리 충,방전기 설계 및 해석)

  • Choe,Jae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.118-126
    • /
    • 2003
  • In this study, a battery charge and discharge regulator of modular type is designed as paralleled bi-directional converter that is possible to provide the power without failure not only in the steady state but also in the transient period by the step load variation or the unexpected faults among the converter modules. Each converter module is designed to get stability, performance, reliability, and maintainability and the average current mode method used for controller has the advantages such as noise immunity, fast response, and the real average current signal acquisition. The equivalent model and small signal model for the paralleled battery chargerIdischarger are presented, and also the transfer functions are analyzed for the CCM(Continuous Charge Mode), CDM(Continuous Discharge Mode) and DDM(Discontinuous Discharge Mode). The experiments of the paralleled bi-directional converter are carried out in the step load variation, and in faults of one converter module respectively. And the performance of paralleled bi-directional converter is verified via the experimental results.

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.