• Title/Summary/Keyword: Discontinuous distribution

Search Result 106, Processing Time 0.028 seconds

Effect of shale or mica schist on slope stability (셰일 및 운모편암의 사면안전성에 미치는 영향)

  • Lee, Byung-Joo;Shin, Hee-Soon;SunWoo, Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1-11
    • /
    • 2006
  • To be design the slope, the area distributed the shale or mica schist which was metamorphosed by shale must carefully consider the stability. The shale has the detrital materials of which the grain size are 1/256mm and fissility. As the reason the slope of shale is always unstable by bedding slip and fissility but also the joint and fault. Mica schist is also another unstable rock for slope by schistosity, cleavage, axial plane of a fold etc. In general shale and mica schist contain the swelling clay minerals such as smectite, vermiculite and montmorillonite. These minerals make the slope unstable. At OO tunnel construction area for the rail way of the Kyungbu high speed train, the slope of mica schist is very unstable by the distribution phenomena of the discontinuous plane such as joints which are 1-5cm spacing and thrust and strike-slip fault. By the drilling core of this area, most RQD have 0-20%.

  • PDF

Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches

  • Ozsahin, Talat Sukru
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.383-403
    • /
    • 2007
  • The contact problem for an elastic layer resting on an elastic half plane is considered according to the theory of elasticity with integral transformation technique. External loads P and Q are transmitted to the layer by means of two dissimilar rigid flat punches. Widths of punches are different and the thickness of the layer is h. All surfaces are frictionless and it is assumed that the layer is subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane will be continuous, if the value of load factor, ${\lambda}$, is less than a critical value, ${\lambda}_{cr}$. However, if tensile tractions are not allowed on the interface, for ${\lambda}$ > ${\lambda}_{cr}$ the layer separates from the interface along a certain finite region. First the continuous contact problem is reduced to singular integral equations and solved numerically using appropriate Gauss-Chebyshev integration formulas. Initial separation loads, ${\lambda}_{cr}$, initial separation points, $x_{cr}$, are determined. Also the required distance between the punches to avoid any separation between the punches and the layer is studied and the limit distance between punches that ends interaction of punches, is investigated. Then discontinuous contact problem is formulated in terms of singular integral equations. The numerical results for initial and end points of the separation region, displacements of the region and the contact stress distribution along the interface between elastic layer and half plane is determined for various dimensionless quantities.

A study on the optimal equation of the continuous wave spectrum

  • Cho, Hong-Yeon;Kweon, Hyuck-Min;Jeong, Weon-Mu;Kim, Sang-Ik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2015
  • Waves can be expressed in terms of a spectrum; that is, the energy density distribution of a representative wave can be determined using statistical analysis. The JONSWAP, PM and BM spectra have been widely used for the specific target wave data set during storms. In this case, the extracted wave data are usually discontinuous and independent and cover a very short period of the total data-recording period. Previous studies on the continuous wave spectrum have focused on wave deformation in shallow water conditions and cannot be generalized for deep water conditions. In this study, the Generalized Extreme Value (GEV) function is proposed as a more-optimal function for the fitting of the continuous wave spectral shape based on long-term monitored point wave data in deep waters. The GEV function was found to be able to accurately reproduce the wave spectral shape, except for discontinuous waves of greater than 4 m in height.

Testing the Existence of a Discontinuity Point in the Variance Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.707-716
    • /
    • 2006
  • When the regression function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better propose a test for the existence of a discontinuity point with the regression function rather than the variance function. In this paper we consider that the variance function only has a discontinuity point. We propose a nonparametric test for the existence of a discontinuity point with the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. The proposed method is based on the asymptotic distribution of the estimated jump size.

  • PDF

Effect of rock joint roughness on shear strength (조도(粗度)가 전단강도에 미치는 영향)

  • 김영기;천성환
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 1992
  • Rock mass having discontinuous plane almost appear roughness which have a great effect on shear strength. Rocks of studied object choose granites (15 samples), gneisses (7 samples), and andesites (1 sample). The purpose of this study was to clarify shear strength of discontinuous planes as value of shear strength angle (${\Phi}_p$), critical stress of roughness (${\sigma}_r$) and shear failure strength (${\tau}_o$). 1. Roughness decrease from ${\Phi}_i=38.03^{\circ}$ to $33.21^{\circ}$ that is, friction angle has the highest value at first stage and has the lowest value at the last stage. 2. Critical angle of roughness distribution within $45^{\circ}$ (test max. $angle=43^{\circ}$), JRC(Joint Roughness Coefficient) is less than 14 and lies distribution range of boundary is following: $JRC=-4.63Ln{\sigma}n+5.63$. 3. When the roughness critical stress(${\sigma}_T) is from 0.1 to 3 .56Mpa, shear failure strength of roughness (${\tau}_o$) is from 0.01 to 0.46Mpa, shear strength(${\tau}$) of discontinuous plane is from 3.65 to 39.11 Mpa. If loading is higher than these values, collapse and sliding will occur on the rock mass.

  • PDF

Influence of Discontinuous Layer on Plankton Community Structure and Distribution in Masan Bay, Korea (마산만에서 관찰된 불연속층과 플랑크톤 군집구조와의 관계)

  • HAN Myung-Soo;KIM Se-Wha;KIM Young-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.459-471
    • /
    • 1991
  • The community structure and micro-scale distribution of plankton in relation to hydrography were investigated in Masan Bay, Korea in October 1989. Warmer and less saline waters with stratification was located in the inner part of the Pudo Strait, and chlorophyll-a and nutrients were higher. Both phytoplankton biomass and nutrients was changed dramatically around the Strait. Offshore/oceanic species in phytoplankton i.e., Chaetoceres decipiens, Rhizosolenia stolterforthii, Rhizosolenia styliformis and Ceratium trichoceros and zooplankton i.e., Sagitta enflata, Oncaea uenusta and Oikopluera longicaudata occurred mainly in well mixed waters of the outer part. This suggests that discontinuous layer seems to play an important role as an approximate border for the plankton population. This layer was located between Station 3 and Station 4 near the Pudo Strait, since the layer consisted of a series of micro-scale discontinuties of salinity and dissolved inorganic nutrients gradient. Phytoplankton patchs of more than 801e1 were found only in the inner part of the bay. Depletion of silicate caused by a rapid assimilation of phytoplankton in the inner part of the bay seemed to be responsible for the decline of blooms.

  • PDF

Analysis of Slope Stability by the Distinct Element Method(Application to the Toppling Mechanisms) (개별요소법에 의한 사면 안정성 연구(토플링 파괴 메카니즘에 응용))

  • 한공창
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.96-107
    • /
    • 1993
  • This paper deals with the analysis of rock slope stability using the distinct element method. This method consists in analysis of the interaction of discrete block assemblage delimited by elementary joints, which permits to consider the heterogeneous, anisotropic and discontinuous features of the rock mass. In particular, we were able to show that this method, and especially the BRIG3D software, is an outstanding tool which gives informations of greatest interest in order to analyze the toppling mechanisms. We have confirmed the fundamental role of the rock mass structure with different simulations. In the case of toppling phenomena, the essential parameter is the dip of major discontinuities. It has an influence on the intensity and volume of deformations. The anisotropic and heterogeneous features of the rock mass play also an important role. It is proved by insertion of thick rock bars in the structure or varying rock block sizes in the mass. These models modified considerably the stress distribution and the deformation distribution. Finally, we have analyzed the influence of mechanical parameters such as friction angle and tangential stiffness.

  • PDF

A Theoretical and Numerical Study on Channel Flow in Rock Joints and Fracture Networks (암석절리와 균열망내에서의 채널흐름에 관한 이론적 수치해석적 연구)

  • 송명규;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 1994
  • The study on the flow characteristics and analysis of groundwater in discontinuous rock mass is very important, since the water inflow into the underground opening during excavation induces serious stability and environmental problems. To investigate the flow through single rock joint, the effect of various aperture distribution on the groundwater flow has been analyzed. Observed through the analysis is the "channel flow", the phenomenon that the flow is dominant along the path of large aperture for given joint. The equivalent hydraulic conductivity is estimated and verified through the application of the joint network analysis for 100 joint maps generated statistically. Both the analytic aproach based on isotropic continuum premise and the joint network analysis are tested and compared analyzing the gorundwater inflow for underground openings of different sizes and varying joint density. The joint network analysis is considered better to reflect the geometric properties of joint distribution in analyzing the groundwater flow.ater flow.

  • PDF

Strain Amplitude Dependence of Damping Capacity in Mg-AI-Si Alloy (Mg-Al-Si 합금에서 진동감쇠능의 변형진폭 의존성)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.144-148
    • /
    • 2011
  • Change in damping capacity with strain amplitude was studied in Mg-Al-Si alloy in as-cast, solution-treated and aged states, respectively. The as-cast microstructure of the alloy is characterized by eutectic ${\beta}$($Mg_{17}Al_{12}$) phase and Chinese script type $Mg_2Si$ particles. The solution treatment dissolved the ${\beta}$ phase into the matrix, while the aging treatment resulted in the distribution of continuous and discontinuous type ${\beta}$ precipitates. The solution-treated microstructure showed better damping capacity than as-cast and aged microstructures both in strain-dependent and strain-independent damping regions. The decrease in second-phase particles which weakens the strong pinning points on dislocations and distribution of solute atoms in the matrix, would be responsible for the enhanced damping capacity after solution treatment.

Strain Distribution of transition zone in a nailed wall (네일로 보강된 구조물에서의 변이영역과 변형률 분포)

  • 장기태;남궁한;유병선;김경태;권병근;이선경
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.235-239
    • /
    • 2000
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are 'active zone' and 'passive zone'. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain distribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF