• 제목/요약/키워드: Discontinuous Plane

검색결과 61건 처리시간 0.022초

사면의 변이영역에서 보강재의 변형률 특성 (Strain Characteristics of Reinforcing materials in the transition zone of slopes)

  • 김경태;장대수;장기태;한희수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 사면안정학술발표회
    • /
    • pp.119-127
    • /
    • 2003
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are‘active zone’and‘passive zone’. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain distribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

2개의 성장 균열들의 상호작용에 관한 응력확대계수 해석 (Analysis of Stress Intensity Factors for Interacting Two Growing Cracks)

  • 박성완
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.47-57
    • /
    • 2000
  • In this study, a fundamental approach to make clear the mechanism of the mutual interference and coalescence of stress fields in the vicinity of two crack tips on the process of their slow growth, using boundary element method. Automatic generation of quadratic discontinuous elements along both of the crack boundaries which can be defined by an arbitrary piece-wise straight geometry. The direction of the crack-extension increment is predicted by the maximum principal stress criterion, corrected to account for the discreteness of the crack extension. Along the computed direction, the crack is extended one increment. Automatic incremental crack-extension analysis with no remeshing, computation of the stress intensity factors by J-integral. Numerical stress intensity factors for two growing cracks in plane-homogeneous regions were determined.

  • PDF

CED에 의한 계면굴절균열의 진전거동평가 (The Evaluation of the Kinked Interface Crack Behavior in Dissimilar Materials by CED)

  • 권오헌
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.414-422
    • /
    • 1997
  • The characteristics on the extension of the CED(Crack Energy Density) concept to the interface kinked crack problems in a dissimilar are examined. Each mode contributions of CED are found by symmetric and antisymmetric conponents and domain independent integrals. Finite element calculation is carried out to simulate the interface kinked crack growth on a bimaterial. The focus is the establishment of fracture criterion with CED and finding the orientation of crack extension. From the results, a prediction about the extension behavior of an interface kinked crack can be done. And we show that CED can be a parameter to indicate fracture criterion at an interface kinked crack.

반복하중을 받는 철근콘크리트 교각의 비탄성 거동에 미치는 크기효과에 관한 해석적 연구 (Analytical Study on the Size Effect Influencing Inelastic Behavior of ]Reinforced Concrete Bridge Piers Subjected to Cyclic Lead)

  • 김태훈;신현목
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.131-138
    • /
    • 2001
  • The purpose of this study is to investigate size effect on inelastic behavior of reinf bridge piers subjected to cyclic load. A computer program, named RCAHEST(Reinforced Co Analysis in Higher Evaluation System Technologr), for the analysis of reinforced concret was used. Material nonlinearity is taken into account by comprising tensile, compressiv models of cracked concrete and a model of reinforcing steel The smeared crack app incorporated. In boundary plane at which each member with different thickness is conne discontinuous deformation due to the abrupt change in their stiffness can be taken into introducing interface element. The effect of number of load reversals with the same d amplitude has been also taken into account to model the reinforcing steel. To determine th on bridge pier inelastic behavior, a 1/4-scale replicate model was also loaded for compar full-scale bridge pier behavior.

  • PDF

Timoshenko 이론에 의한 불연속 변단면 포물선 아치의 자유진동 해석 (Free Vibration Analysis of Stepped Parabolic Arches with Timoshenko's Theory)

  • 오상진;진태기;모정만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.942-947
    • /
    • 2004
  • The differential equations governing free, in-plane vibrations of stepped non-circuiar arches are derived as nondimensional forms including the effects of rotatory inertia, shear deformation and axial deformation. The governing equations are solved numerically to obtain frequencies and mode shapes. The lowest four natural frequencies and mode shapes are calculated for the stepped parabolic arches with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of arch rise to span length ratios, slenderness ratios, section ratios, and discontinuous sector ratios are considered. The effect of rotatory inertia and shear deformation on natural frequencies is reported. Typical mode shapes of vibrating arches are also presented.

  • PDF

박판시험편의 균열성장 시물레이션에 미치는 파괴기준 평가 (The Evaluation of the Fracture Criterion having an Effect on Crack Extension Simulation for a Thin Sheet)

  • 권오헌
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.15-19
    • /
    • 2000
  • The exact estimation of the ductile crack growth in a thin sheet would be needed in part of the commercial transport aircraft industry fields. A 2-dimensional elastic plastic finite element analysis was carried out to simulate a stable crack extension in a thin sheet 2024 aluminium alloy. Two kinds of crack modeling were used to evaluate curves of the stable crack extension. And then CTOA(crack tip opening angle) and CTED(crack tip energy density) were calculated in order to determine whether they can be used as useful crack extension criterions in a thin sheet. Results indicate that stable crack extension behaviors were simulated well and CTED is more admirable even though CTOA also is reasonable as a criterion for a stable crack extension in a thin 2024 aluminium alloy sheet.

  • PDF

네일로 보강된 구조물에서의 변이영역과 변형률 분포 (Strain Distribution of transition zone in a nailed wall)

  • 장기태;남궁한;유병선;김경태;권병근;이선경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 사면안정 학술발표회
    • /
    • pp.235-239
    • /
    • 2000
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are 'active zone' and 'passive zone'. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain distribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

슬라이딩모드 상태관측기를 이용한 유도전동기의 강인한 속도제어 (Robust speed control of induction motor using sliding mode state observer)

  • 윤병도;김윤호;김춘삼;김찬기;한재혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.280-282
    • /
    • 1994
  • This paper proposes sliding mode state for robust speed control of induction motor. Sliding mode state observer is robust for measurement noise, modeling-error and load disturbance. The pole of sliding mode state observer can be placed at (0,0) in Z-plane for fast response. This method is, namely, deadbeat control. Sliding mode state observer output is discontinuous on a switching hyperplance, that causes harmful effects such as current harmonics and speed oscillation. In this paper, also the reducing method of the chattering of sliding mode state observer output is proposed. The proposed system is digitally implemented with TMS320C31.

  • PDF

네일로 보강된 구조물에서의 변이영역과 변형률 분포 (Strain Distribution of Transition Zone in a Nail Wall)

  • 장기태;남궁한;유병선
    • 지구물리
    • /
    • 제8권1호
    • /
    • pp.39-43
    • /
    • 2005
  • For the calculation of internal stability, the hypothesis in conventional design is on the basis of two distinct zones, which are 'active zone' and 'passive zone'. This means that there is an abrupt discontinuous transition from active to passive states across a potential failure line. The existence of a discontinuity of this nature appears physically unreasonable, especially from kinematic considerations. A series of pull-out model tests was undertaken from a wall being rotated about the toe to find the strain istribution mobilized from near the wall face into the deep, stable zone through the centre plane. With this finding of transition zone, the objective of study is aiming at identifying the likely effect of this zone in designing method by comparing with the prevailing design method.

  • PDF

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • 한국도로학회논문집
    • /
    • 제8권1호
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF