• Title/Summary/Keyword: Discontinuity in rock-mass

Search Result 85, Processing Time 0.028 seconds

Case Study of Derivation of Input-Parameters for Ground-Structure Stability on Foliation-Parallel Faults in Folded Metamorphic Rocks (단층 발달 습곡지반 상 구조물 안정성을 위한 설계정수 도출 사례 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.467-472
    • /
    • 2020
  • Methods for deriving design input-parameters to ensure the stability of a structure on a common ground are generally well known. Folded metamorphic rocks, such as the study area, are highly foliated and have small faults parallel to the foliation, resulting in special research methods and tests to derive design input parameters, Etc. are required. The metamorphic rock ground with foliation development of several mm intervals has a direct shear test on the foliation surface, the strike/dip mapping of the foliation, the boring investigation to determine the continuity of the foliation, and the rock mass rating of the metamorphic rock. etc. are required. In the case of a large number of small foliation-parallel faults developed along a specific foliation plane, it is essential to analyze the lineament, surface geologic mapping for fault tracing, and direct shear test. Folded ground requires additional geological-structural-domain analysis, discontinuity analysis of stereonet, electrical resistivity exploration along the fold axis, and so on.

Rock Slope Stability Analysis in Boeun Region Considering Properties of Discontinuities (불연속면의 특성은 고려한 보은지역 암반사면 안정성해석)

  • 이지수;박혁진;민경덕;구호본
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.601-615
    • /
    • 2001
  • The study area. Boeun-eup Boeun-kun, belongs to Ogchon metamorphic belt which is highly metamorphosed and consisted of complex geologic formations. Even though the geological structures and formations are complex and metamorphosed, the geological investigation and consideration are not enough and consequently the plane failure is occurred in the rock slope which was under construction on 1 : 0.5 gradient. This area is assessed as unstable and additional failure is possible by the discontinuity with same direction of failure surface. Therefore, the authors evaluate the slope stability using various analysis methods such as SMR, stereographic projection method, and the limit equilibrium analysis. In order to analyze stress redistribution and nonlinear displacement behavior caused by stress release, the authors conduct numerical analysis with UDEC and then the behavior of rock mass is analyzed after reinforcements are applied.

  • PDF

The Slope Reinforcement by use of FRP (FRP를 이용한 사면보강)

  • 이상덕;권오엽;최용기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.155-180
    • /
    • 2000
  • The pattern of domestic slope construction has been steadily changed from the simpled and small-scale to the large-scale and complicated one, frequently near the existing structures, as the density of population and the traffic increases. In some cases, the slopes become steeper and larger due to the road improvement and construction. For the rock slope, the existence of discontinuity cannot be disregarded and acts as an important factor on the slope stability. Most of the existing methods for stabilizing the slope were focused on reducing the slope angle. Under the specific geographic condition, it is necessary to concentrate more efforts on the research and development of supporting system for the slope stability. As a supporting system, it is often very advantageous to use the FRP pipe grouting method that is similar to the existing soil nailing method or the rock bolting method but uses the high strength FRP pipe as a principal reinforcement in place of steel bar. Through the FRP pipe, the grout material can be injected into the rock mass to improve its shear strength to the required value. .In this study, the characteristics of FRP are investigated by the laboratory tests and the field tests. And, the practical aspects of FRP method are reviewed and analyzed.

  • PDF

Numerical Analysis on the Effect of Fractured Zone on the Displacement Behavior of Tunnel (파쇄대가 터널 주변 암반의 변형 거동에 미치는 영향에 대한 수치해석적 연구)

  • Kim Chang-Yong;Kim Kwang-Yeom;Moon Hyun-Koo;Lee Seung-Do;Baek Seung-Han
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.218-231
    • /
    • 2006
  • Anisotropic/heterogeneous rock mass shows various deformation behavior types due to tunnelling because deformation behavior is largely controlled by the spacial characteristics of geological factors such as faults, joints and fractured zone in rock mass. In this paper 2-dimensional numerical analysis on the several influencing factors is performed considering fractured zone located near tunnel. This numerical analysis shows that deformation behavior of tunnel are very different according to the width and the location of fractured zone and supper method. However, 3-dimensional analysis is necessary to consider 3-dimensional geometrical characteristics sufficiently since discontinuity and fractured zone have 3-dimensional geometry. Also flexible design/construction guidelines for tunnelling are required to cope with uncertain ground condition and circumstance for technically safe and economic tunnel construction.

Numerical simulation and countermeasure on upheaval generation in the road caused by sliding of a slope (사면활동으로 야기된 도로부 융기발생에 대한 수치해석 및 고찰)

  • Kim, Seung-Hee;Rhee, Jong-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.833-841
    • /
    • 2008
  • Recently, the upheaval generation in the road which is under service had been reported. Due to the upheaval generation, total 4 lanes were forced to curtail to 3 lanes, and traffic was delayed. In normal situation of cut-slopes in korea, that condition is hard to detect since most cut-slopes contain discontinuous material, that is rock. Common collapses in rock-slopes is wedge failure, plane failure and toppling failure which is all individual mechanism of discontinuous rock mass. In contrast, such upheaval in the road in front of cut-slope can be generated only when circular movement is triggered within the cut-slope. In this sense, rock-slopes barely show any kind of movement in the road locates at the front of them. Numerical analysis is general method in simulation of slope displacement and evaluation of safety. However, numerical analysis programs which are related with rock-slopes are not able to simulate such upheaval movement because that programs are based on discontinuous modeling mechanism. In addition, although numerical analysis programs which are based on FEM/FDM and thus utilize continuous modeling mechanism are able to simulate circular movement and upheaval situation, they have weakness in reflecting discontinuities of rock-slope itself. In this study, detailed in-site investigation and numerical analysis based on in-site condition were performed in order to expect upheaval movement in the road. In this procedure, the FLAC program which uses continuous modeling method was utilized, and new approach reflecting discontinuity developed toward the road with a ubiquitous joint model was tried to derive reliable analysis result.

  • PDF

Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations

  • Haghnejad, Ali;Ahangari, Kaveh;Moarefvand, Parviz;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.545-552
    • /
    • 2018
  • Blast-induced ground vibrations by a significant amount of explosives may cause many problems for mining slope stability. Geological discontinuities have a significant influence on the transmission of dynamic pressure of detonation and according to their position relative to the slope face may have damaging or useful impacts on the slope stability. In this study, the effect of geological discontinuities was investigated by modelling a slope with geological discontinuities through applying the dynamic pressure in three-dimensional discrete element code (3DEC). The geological discontinuities in four states that generally apperceived in mine slopes are considered. Given the advantages of the pressure decay function defined by some researcher, this type of function was used to develop the pressure-time profile. The peak particle velocities (PPV) values were monitored along an axis by utilization of Fish programming language and the results were used as an indicator to measure the effects. As shown in the discontinuity-free model, PPV empirical models are reliable in rocks lacking discontinuities or tightly jointed rock masses. According to the other results, the empirical models cannot be used for the case where the rock mass contains discontinuities with any direction or dip. With regard to PPVs, when the direction of discontinuities is opposite to that of the slope face, the dynamic pressure of detonation is significantly damped toward the slope direction at the surface of discontinuities. On the other hand, when the discontinuities are horizontal, the dynamic pressure of detonation affects the rock mass to a large distance.

Shear Load-Transfer Function of Rock-Socketed Drilled Shafts Considering Borehole Roughness (굴착면 거칠기를 고려한 암반 근입 현장타설말뚝의 주면 하중전이함수 제안)

  • Seol, Hoon-Il;Woo, Sang-Yoon;Han, Keun-Taek;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.23-35
    • /
    • 2006
  • Shear load transfer characteristics of rock-socketed drilled shafts were analyzed. The constant normal stiffness (CNS) direct shear tests were performed to identify the major influencing factors of shaft resistance, i.e., unconfined compressive strength, borehole roughness, normal stiffness, initial confining stress, and material properties. Based on the CNS tests, shear load transfer function of drilled shafts in rocks is proposed using borehole roughness and the geological strength index (GSI), which indicates discontinuity and surface condition of rock mass in Hoek-Brown criterion (1997). The proposed load-transfer function was verified by the load test results of seven rock-socketed drilled test shafts subjected to axial loads. Through comparisons of the results of load tests, it is found that the load-transfer function by the present study is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load transfer of drilled shafts.

An Analysis of the Behavior of Rock Slope with Excavation-Induced Tension Cracks Located in DongHae Highway Construction Site (개착과정에서 인장균열이 발생된 동해고속도로 건설현장 암반사면의 거동 해석)

  • 조태진;이창영;고기성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.15-27
    • /
    • 2004
  • Sliding aspects of rock slope, where large-scaled tension cracks are induced during preliminary excavation, have been analyzed. Structure of rock mass is investigated by performing the electrical resistivity survey and the orientations and positions of discontinuities are measured from DOM-drilled core log. Geological evidence far primary failure movement has been detected and clay minerals which possess swelling properties are identified through XRD analysis. Slope stability is examined by considering the orientations of discontinuities and their trace distributions on the cut-face and neighboring natural slope surface. Both orientations and positions of failure-invoking discontinuity planes, traces of which are exposed within the anticipated sliding region, are concerned fur analyzing the preferred sliding directions. Regional sliding vectors are assessed based on the relative positions of potential sliding planes in the boreholes and the general trend of anticipated failure movement of rock slope is also investigated.

Technical lessons learnt from the case history of tunnel collapses (터널 붕괴사례로 부터의 기술적 교훈)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.835-844
    • /
    • 2009
  • In this study, a database composed by 46 cases of tunnel collapses has been built up. Based on the database, comprehensive data analysis is carried out, providing us a number of the technical lessons, which can be considered in future design and construction to minimize possibility of tunnel collapse disaster. For making a better understanding, the technical lessons are given in two divisions: mountain tunnel and urban tunnel. Tunnel collapses taking place in the former tunnel are generally due to bad discontinuity condition of jointed rock mass. Otherwise, urban tunnel has weak condition generally on ground water and weathering of ground. Most of technical comments given in this paper are made based on the cases of tunnel collapses only used in this study, so that the comments seems to be hard to be available to all the tunnelling cases. However, the comment should be valuable technical lessons for tunnel engineers to consider in tunnel design or construction.

  • PDF

Grouting Improvement through Correlation Analysis of Hydrogeology and Discontinuity Factors in a Jointed Rock-Mass (절리 암반의 수리지질 및 불연속면 특성 간 상관분석을 통한 그라우팅 계획 수립의 개선 방안)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.279-294
    • /
    • 2024
  • Large-scale civil engineering structures such as dams require a systematic approach to jointed rock-mass grouting to prevent water leakage into the foundations and to ensure safe operation. In South Korea, rock grouting design often relies on the experience of field engineers that was gained in similar projects, highlighting the need for a more systematic and reliable approach. Rock-mass grouting is affected mainly by hydrogeology and the presence of discontinuities, involving factors such as the rock quality designation (RQD), joint spacing (Js), Lugeon value (Lu), and secondary permeability index (SPI). This study, based on data from field investigations of 14 domestic sites, analyzed the correlation between hydrogeological factors (Lu and SPI), discontinuity characteristics (RQD and Js), and grout take, and systematically established a design method for rock grouting. Analysis of correlation between the variables RQD, Js, Lu, and SPI yielded Pearson correlation (r) values as follows: Lu-SPI, 0.92; RQD-Lu, -0.75; RQD-Js, 0.69; RQD-SPI, -0.65; Js-Lu, -0.47; and SPI-Js, -0.41. The grout take increases with Lu and SPI values, but there is no significant correlation between RQD and Js. The proposed approach for grouting design based on SPI values was verified through analysis and comparison with actual curtain-grouting construction, and is expected to be useful in practical applications and future studies.