• Title/Summary/Keyword: Discontinuity in rock-mass

Search Result 83, Processing Time 0.025 seconds

Kinematic Analysis of Plane Failure for Rock Slope Using GIS and Probabilistic Analysis Method (GIS와 확률론적 해석 기법을 기반으로 한 평면파괴의 운동학적 안정성 해석)

  • Lee, Seok Hwan;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • The stability of rock slope is mainly controlled by the orientation and shear strength of discontinuties in rock mass. Therefore, in kinematic analysis, the orientation of the combination of discontinuities and slope face is examined to determine if certain modes of failure can be occurred. In previous kinematic analysis, a representative orientation of the slope face and mean orientation of discontinuity set were used as input parameters. However, since the orientations of slope face varies according to locations of measurement, the representative slope face orientation could cause misunderstanding for kinematic instability. In addition, since the orientations of each discontinuity are scattered in the same discontinuity set, there is the possibility that uncertainties are involved in the procedure of kinematic analysis. Therefore, in this study, the detailed digital topographic map was used to obtain the orientation of slope face. In addition, the probabilistic analysis approach was utilized to deal properly with the uncertainties in discontinuity orientation. The proposed approach was applied to steep slopes in mountain road located in Baehuryeong, Chunncheon city, Gangwon-Do. The analysis results obtained from the deterministic and probabilistic analysis were compared to check the feasibility of proposed the analysis.

New Observational Design and Construction Method for Rock Block Evaluation of Tunnels in Discontinuous Rock Masses (불연속성 암반에서의 터널의 암반블럭 평가를 위한 신 정보화설계시공법)

  • Hwang Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.1-10
    • /
    • 2006
  • Rock masses in nature include various rock discontinuities such as faults, joints, bedding planes, fractures, cracks, schistosities, and cleavages. The behavior of rock structures, therefore, is mainly controlled by various rock discontinuities. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which cannot be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the rock excavation. The observational design and construction method of tunnels in rock masses is becoming important recently. In this paper, a new observational design and construction method for rock block evaluation of tunnels in discontinuous rock masses is proposed, and then applied to the tunnel based on actual rock discontinuity information observed in the field. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed far the new observational design and construction method. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports. The effectiveness of the proposed observational design and construction method has been verified by the confirmation of key block during the enlargement excavation.

A Study on the Impermeable Effect by Grouting in the Subsea Tunnel (해저터널에서 주입에 의한 차수효과 연구)

  • Kim, Seunghwan;Lim, Heuidae;Yoon, Seongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.5-19
    • /
    • 2017
  • In this study, the effect of rock mass curtain grouting was investigated by analyzing the correlation between the parameters of the RMR & grout injection volume, Lugeon value & RQD, Lugeon value & cement injection volume. In order to investigate the effect of rock mass curtain grouting, we analyzed the grout injection volume of 315 curtain grouting holes at 9 tunnel face of NATM Subsea tunnels in gneiss area. The total grout injection volume in the Subsea tunnels study was slightly changed in some tunnels face but decreased with increasing the rating of parameters in spacing of discontinuity (R3, Js) and groundwater condition (R5). The geological anomalies of seismic survey (3D, TSP) and the inflow of probe hole were found to be more correlated of relative than the parameters of RMR. The unit injection volume was found to decrease with higher ratings in the parameters of the RMR except the weathering degree of the discontinuity (Jc, R4). The correlation between RQD and Lugeon values is not significant, but it can be confirmed that the Lugeon value tends to decrease as the RQD value increases.

3D Tunnel Face Modelling for Discontinuities Characterization: A Comparison of Lidar and Photogrammetry Methods (불연속성 특성화를 위한 3차원 터널 막장 모델링: 라이더 및 사진 측량 접근 방식의 비교 분석 중심으로)

  • Chuyen, Pham;Hyu-Soung, Shin
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.549-557
    • /
    • 2022
  • Tunnel face mapping involves the determination of rock discontinuities or weak rock conditions where extra support might be required. In this study, we investigated the application of Lidar scanning and photogrammetry to quantitatively characterize discontinuities of the rock mass on the tunnel face during excavation. The 3D models of tunnel faces generated by using these methods enable accurate and automatic discontinuity measurement to overcome the limitations of manual mapping. The results of this study show that both photogrammetry and Lidar can be used to reconstruct the 3D model of the tunnel face, although the photogrammetric 3D model is less detailed than its counterpart produced by Lidar. Given acceptable accuracy and cost-effectiveness, photogrammetry can be a fast, reliable, and low-cost alternative to Lidar for acquiring 3D models and determining rock discontinuities on tunnel faces.

Numerical Approach for Determination of Shut-in Pressure in Hydrofracturing Test (수압파쇄 균열폐쇄압력 산정을 위한 수치해석 연구)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • The shut-in pressure calculated in common hydrofracturing test for vertical borehole equals generally to the minimum horizontal principal stress, so it should be considered as an essential parameter for determining the in-situ stress regime around the rock mass. It shows usually an ambiguous value in pressure-time history curves, however, because of the relationship between the behavior of hydraulic fractures and the condition of remote stress regime. In this study, a series of numerical analyses have been carried out to compare several methods for determining the shut-in pressure during hydrofracturing. The hydraulic-mechanical coupling has been applied to numerical analysis for simulating the fracture propagation by hydraulic pressure, and the different discontinuity geometry has been considered in numerical models to examine the effect of numerical element shape on fracture propagation pattern. From the numerical simulations with the four different discontinuity geometries, it was revealed that the shut-in pressure obtained from graphical methods rather than statistical method was relatively small. Consequently a care should be taken in selecting a method for determining the shut-in pressure when a stress anomaly around borehole and a fracture propagation with complicate mechanism are considered.

Effect of Rock Discontinuities on Dynamic Shear Stress Wave (암반 불연속면이 동적 전단응력파에 미치는 영향)

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.25-32
    • /
    • 2018
  • This paper investigates the effect of rock discontinuities on a shear stress wave that is induced by earthquake or blasting and provides the result of numerical parametric studies. The numerical tests of different conditions of rock and discontinuity have been carried out after confirming that the numerical approach is valid throughout a verification analysis from which the test results were compared with a theoretical solution. In-situ stress condition was considered as a rock condition and internal friction angle and cohesive value, which are the shear strength parameters, were considered as discontinuities condition. The joint inclination angle was also taken into account as a parameter. With the various conditions of different parameters, the test results showed that a shear stress wave propagating through a mass is highly influenced by the shear strength of discontinuities and the condition of joint inclination angle as well as in-situ stress. The study results indicate that when earthquake or blasting-induced dynamic loading propagates through a jointed rock mass or a stratified soil ground the effect of in-situ stress and discontinuities including a stratum boundary should be taken into account when evaluating the dynamic effect on nearby facilities and structures.

On the underground imaging using borehole camera

  • Jeong Yun-Young;Nakagawa Hideaki;Shimada Hideki;Matsui Kikuo;Kim JaeDong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.52-59
    • /
    • 2003
  • It is only possible through the image analysis of borehole wall and the core recovered from borehole constructed in rock mass that the real information about geologic characteristics in rock mass is directly obtained in primary research. Monitoring apparatus with multi-functional utility has implemented and applied in-situ condition for finding the geologic condition of target area. But, this apparatus is very expensive to be applied at the risk of loss during monitoring and cause hard work for moving them to the determined position. This paper shows the underground imaging from the borehole information obtained by a borehole camera with the simple utility and low cost enough to investigate the characteristics of borehole wall. Monitoring for this has been done in open-pit mine located at the northeastern part of Fukuoka Prefecture in Japan, and finally the three dimensional imaging of geological discontinuity was discussed relative to the field condition.

  • PDF

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.

Case Study of Derivation of Input-Parameters for Ground-Structure Stability on Foliation-Parallel Faults in Folded Metamorphic Rocks (단층 발달 습곡지반 상 구조물 안정성을 위한 설계정수 도출 사례 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.467-472
    • /
    • 2020
  • Methods for deriving design input-parameters to ensure the stability of a structure on a common ground are generally well known. Folded metamorphic rocks, such as the study area, are highly foliated and have small faults parallel to the foliation, resulting in special research methods and tests to derive design input parameters, Etc. are required. The metamorphic rock ground with foliation development of several mm intervals has a direct shear test on the foliation surface, the strike/dip mapping of the foliation, the boring investigation to determine the continuity of the foliation, and the rock mass rating of the metamorphic rock. etc. are required. In the case of a large number of small foliation-parallel faults developed along a specific foliation plane, it is essential to analyze the lineament, surface geologic mapping for fault tracing, and direct shear test. Folded ground requires additional geological-structural-domain analysis, discontinuity analysis of stereonet, electrical resistivity exploration along the fold axis, and so on.

Rock Slope Stability Analysis in Boeun Region Considering Properties of Discontinuities (불연속면의 특성은 고려한 보은지역 암반사면 안정성해석)

  • 이지수;박혁진;민경덕;구호본
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.601-615
    • /
    • 2001
  • The study area. Boeun-eup Boeun-kun, belongs to Ogchon metamorphic belt which is highly metamorphosed and consisted of complex geologic formations. Even though the geological structures and formations are complex and metamorphosed, the geological investigation and consideration are not enough and consequently the plane failure is occurred in the rock slope which was under construction on 1 : 0.5 gradient. This area is assessed as unstable and additional failure is possible by the discontinuity with same direction of failure surface. Therefore, the authors evaluate the slope stability using various analysis methods such as SMR, stereographic projection method, and the limit equilibrium analysis. In order to analyze stress redistribution and nonlinear displacement behavior caused by stress release, the authors conduct numerical analysis with UDEC and then the behavior of rock mass is analyzed after reinforcements are applied.

  • PDF