• 제목/요약/키워드: Discharged loading

검색결과 58건 처리시간 0.02초

영산강 수계의 비점오염원에 관한 연구 I - 토지이용 및 강우를 중심으로 - (Non-Point Source Pollutions of the Youngsan River Basins I - The Method of Land-Use Types and Rainfall -)

  • 차진명;신성의;차규석
    • 환경영향평가
    • /
    • 제8권1호
    • /
    • pp.41-49
    • /
    • 1999
  • This study was carried out to estimate the runoff loading characteristics of the non-point source pollutions in the Youngsan river basins by the method of land-use types and rainfall. The lysimeter test, rainfall and stream flowmeter measurement were performed to develop the pollutant loading unit discharged from the non-point sources. As the non-point sources, the unit pollutant discharge rates were different from the land-use types such as paddy field, upland, forest, housing site and others. The pollutant loading units classified by land-use types in the Youngsan river basins are as follows: The total BOD loading rate is 15.3 ton/day and the housing site is discharged 50.6%, the total T-N loading rate is 6.0 ton/day and the paddy field and upland is discharged 77.6%, and the total T-P loading rate is 0.39 ton/day and the paddy field and upland is discharged 81.2%. The pollutant loadings by rainfall in the Youngsan river basins are about 7,425 ton/year of BOD, 324 ton/year of T-N and 118 ton/year of T-P, respectively.

  • PDF

남강중권역 오염부하 전망 및 삭감 시나리오별 하류 수질예측 (Water Quality Prediction and Forecast of Pollution Source in Namgang Mid-watershed each Reduction Scenario)

  • 유재정;신석호;윤영삼;강두기
    • 환경영향평가
    • /
    • 제21권4호
    • /
    • pp.543-552
    • /
    • 2012
  • Namgang mid-watershed is located in downstream of Nakdong river basin. There are many pollution sources arround this area and it's control is important to manage a water quality of Nakdong river. A target year of Namgang mid-watershed water environment management plan is 2013. To predict a water quality at downstream of Namgang, we have investigated and forecasted the pollutant source and it's loading. There are some plan to construction the sewage treatment plants to improve the water quality of Nam river. Those are considered on predicting water quality. As results, it is shown that the population is 343,326 and sewerage supply rate is 79.2% and the livestock is 1,662,000 in Namgang mid-watershed. It is estimated that the population is 333,980, the sewerage supply rate is 86.9% in 2013. The milk cow and cattle were estimated upward and the pigs were downward by 2013. The generated loading of BOD and TP is 75,957 kg/day and 4,311 kg/day, discharged loading is 18,481 kg/day and 988 kg/day respectively in 2006. It were predicted upward the discharged loading of BOD and TP by 4.08% and 6.3% respectively. The results of water quality prediction of Namgang4 site were 2.5 mg/L of BOD and 0.120 mg/L of TP in 2013. It is over the target water quality at that site in 2015 about 25.0% and 9.1% respectively. Consequently, there need another counterplan to reduce the pollutants in that mid-watershed.

Contribution of Non-Point Pollution to Water Quality and Runoff Characteristics from Agricultural Area of the Upstream Watersheds of Lake Chinyang

  • Lee, Chun-Sik;Jang, Seong-Ho
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.259-267
    • /
    • 2013
  • In this study, non-point source(NPS) contribution was investigated based on flow rates and water qualities of streams into the lake during rainfall events. Event mean concentration(EMC) and the pollution loads were calculated to establish a database for NPS control measurement in the survey area, and so on. The runoff characteristics of NPS were investigated and estimated on the basis of the ratio of an agricultural to forest area in the stream of sub-catch basin during rainfall events. Non-point source pollution loads were also calculated to establish a database for NPS control measure in the upstream lake Chinyang. At a rainfall event, BOD concentrations rise sharply at the early peak time of runoff, however, peaks of TSS concentration were observed at the similar time of peak flow. This was a phenomenon shown at the watersheds caused by forest and geological types. The discharged EMC range was 2.9-4.8 mg/L in terms of BOD. The discharged EMC range was 6.2-8.2 mg/L in terms of SS. The discharged EMCs of T-N and T-P were 1.4-2.5 mg/L and 0.059-0.233 mg/L, respectively. Total BOD loading rate through the 3 tributaries to the lake Chinyang was 1,136 kg/d during dry weather. The upper watershed area of the Nam-river dam in this study was divided into 14 catchment basins based on the Korean guideline for total maximum daily load(TMDL) of water quality pollutants. The higher the agricultural land-use ratio, the more NPS loading rate discharged, but the more occupied a forest area, the lower more NPS loading rate discharged. In an agricultural land-use area more than 20%, the increase of NPS loadings might be dramatically diffused by increasing the integrated complex-use like vinyl-house facilities and fertilizer use etc. according to the effective land-use utilization. The NPS loading rates were BOD 0.3 $kg/ha{\cdot}day$, SS 0.21 $kg/ha{\cdot}day$, TN 0.02 $kg/ha{\cdot}day$, TP 0.005 $kg/ha{\cdot}day$ under less than 10% agricultural land-use. In agricultural land-use of 20%-50%, these values were investigated in the range of 0.32 $kg/ha{\cdot}day$-0.73 $kg/ha{\cdot}day$ for BOD, 0.92 $kg/ha{\cdot}day$-3.32 $kg/ha{\cdot}day$ for SS, 0.70 $kg/ha{\cdot}day$-0.90 $kg/ha{\cdot}day$ TN, 0.03 $kg/ha{\cdot}day$-0.044 $kg/ha{\cdot}day$ for TP.

밀양강 중권역 오염부하 전망 및 삭감 시나리오별 하류 수질예측 (Water Quality Prediction and Forecast of Pollution Source in Milyanggang Mid-watershed each Reduction Scenario)

  • 유재정;윤영삼;신석호;권헌각;윤종수;전영인;강두기;갈병석
    • 한국환경과학회지
    • /
    • 제20권5호
    • /
    • pp.589-598
    • /
    • 2011
  • Milyanggang mid-watershed is located in downstream of Nakdong river basin. The pollutants from that watershed have an direct effect on Nakdong river water quality and it's control is important to manage a water quality of Nakdong river. A target year of Milyanggang mid-watershed water environment management plan is 2013. To predict a water quality at downstream of Milyang river, we have investigated and forecasted the pollutant source and it's loading. There are some plan to construction the sewage treatment plants to improve the water quality of Milyang river. Those are considered on predicting water quality. As results, it is shown that the population of Milyanggang mid-watershed is 131,857 and sewerage supply rate is 62.2% and the livestock is 1,775.300 in 2006. It is estimated that the population is 123,921, the sewerage supply rate is 75.5% in 2013. The generated loading of BOD and TP is 40,735 kg/day and 2,872 kg/day in 2006 and discharged loading is 11,818 kg/day and 722 kg/day in 2006 respectively. Discharged loadings were forecasted upward 1.0% of BOD and downward 2.7% of TP by 2013. The results of water quality prediction of Milyanggang 3 site were 1.6 mg/L of BOD and 0.120 mg/L of TP in 2013. It is over the target water quality at that site in 2015 about 6.7% and 20.0% respectively. Consequently, there need another counterplan to reduce the pollutants in that mid-watershed by 2015.

BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가 (Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF)

  • 정광욱;윤춘경;장재호;김형철
    • 한국농공학회논문집
    • /
    • 제49권2호
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

총인부하량을 이용한 인공호의 부영양화 평가 (The evaluation of the eutrophication for the lakes by phosphorus loading)

  • 김재윤
    • 한국환경과학회지
    • /
    • 제12권7호
    • /
    • pp.689-695
    • /
    • 2003
  • The purpose of this study is to evaluate and to predict of eutrophication in lakes by using Vollenweider-OECD model and total phosphorus concentration and inflow rate which were measured in 1993∼2001. The results of study were as follows. The annual total phosphorus loading from the watershed was calculated to be 55∼195tP/yr at lake Soyang, 221∼466tP/yr at lake Taechong, 123∼278tP/yr at lake Andong, 57∼109tP/yr at lake Seomjin. These are discharged, far the most parts, from population and fishfarm facility. TP loading on the surface area at lake Soyang was 3.01gP/㎡/yr, 2.82gP/㎡/yr, 2.84gP/㎡/yr, 3.03gP/㎡/yr, 2.34gP/㎡/yr, 1.78gP/㎡/yr, 0.91gP/㎡/yr, 0.89gP/㎡/yr, 0.86gP/㎡/yr, lake Taechong was 6.71gP/㎡/yr, 7.25gP/㎡/yr, 7.24gP/㎡/yr, 6.53gP/㎡/yr, 6.50gP/㎡/yr, 7.06gP/㎡/yr, 7.04gP/㎡/yr, 4.05gP/㎡/yr, 3.44gP/㎡/yr and TP loading on the surface area of lake Andong, lake Soemjin were 5.39gP/㎡/yr, 4.47gP/㎡/yr, 4.56gP/㎡/yr, 4.45gP/㎡/yr, 3.33gP/㎡/yr, 2.38gP/㎡/yr, 2.53gP/㎡/yr, 2.46gP/㎡/yr, 2.54gP/㎡/yr, 4.09gP/㎡/yr, 4.10gP/㎡/yr, 3.98gP/㎡/yr, 3.73gP/㎡/yr, 2.80gP/㎡/yr, 3.46gP/㎡/yr, 3.22gP/㎡/yr, 2.19gP/㎡/yr, 2.13gP/㎡/yr respectively. The tropic states of four lakes can be assessed as eutrophy because phosphorus leading exceeds the critical phosphorus loading by Vollenweider-OECD model.

분뇨처리장 방류수를 정화하는 부들습지의 초기운영 단계에서 총인의 제거 (Total Phosphorus Removal in Cattail Wetland Purifying Effluent from a Night Soil Treatment Plant during Its Initial Operation)

  • 양홍모
    • 한국환경복원기술학회지
    • /
    • 제8권1호
    • /
    • pp.45-51
    • /
    • 2005
  • Total phosphorus(TP) removal was examined in a surface-flow wetland constructed in April 2003 during its initial operating stage from June to November 2003. Its dimensions were 87mL by 14mW. It was a part of a four-wetland-cell treatment system constructed near the Kohung Estuarine Lake located in the southern part of Korea. Effluent from a night soil treatment plant was discharged into the wetland and purified effluent from the wetland was discharged into Sinyang Stream flowing into the Lake. Cattails(Typha angustifolia ) from natural wetlands were cut at about 40 cm height and transplanted into the wetland. An average of 25.0$m^3$/day of effluent flowed from the plant into the wetland. Water depth was maintained about 0.2m and hydraulic detention time was about 5.2 days. Average heights of the cattail stems in June and October 2003 were 47.2 and 164.6cm, respectively. The average number of stems was 10.2 stems/$m^2$ in June 2003 and 18.8 stems/$m^2$ in October 2003. Average temperature of influent and effluent ranged 23.4 and $24.2^{\circ}C$, respectively. The average TP concentrations of influent and effluent were about 1.31, 0.50mg/L, respectively. TP loading rate of influent into the wetland averaged 26.81mg/$m^2$, day and average TP loading rate of effluent was 10.04mg/$m^2$, day. Monthly average TP removal by the wetland during the warm growing season of cattails(June to September) ranged 16.28~19.57mg/$m^2$, day and during the cold senescent period (October to November) ranged 12.62~13.90mg/$m^2$, day. TP removal in the wetland continued during the cold winter months and was primarily done by sedimentation and precipitation of phosphorus rather than phosphorus absorption by cattails and microorganisms.

질산성 질소 기저유출이 지표수 수질에 미치는 영향 (Impacts of Nitrate in Base Flow Discharge on Surface Water Quality)

  • 김건하;이호식
    • 대한토목학회논문집
    • /
    • 제29권1B호
    • /
    • pp.105-109
    • /
    • 2009
  • 강우유출수의 기저유출(base flow)이 지표수 수질에 영향을 미치는 것은 잘 알려져 있다. 이 논문에서는 기저유출로 발생하는 질산성 질소가 수질에 미치는 영향을 USGS의 PULSE 소프트웨어를 사용하여 월별 지하수 유출량을 수문 분리하였다. 2005년도 금강유역의 갑천2 지점의 지표수 수질 및 유량자료를 사용하였으며, 지하수 수질자료는 정부기관 측정자료를 사용 하였다. 갑천2 지점의 상류는 농지 및 임야가 대부분이다. 수문분리 결과, 봄과 가을에는 하천유량의 85~95%가 기저유출 기여량이며 여름과 겨울에는 25~38%가 기저유출 기여량으로 나타났다. 갑천2 지점에서 질산성 질소의 월별 기저유출 부하량은 유역내 지하수의 평균 질산성질소 농도를 이용하여 산정하였다. 갑천2 지점에서 기저유출되는 질산성질소 부하량은 5.4 ton of $NO_{3}{^-}-N/km^{2}$로 추정되었는데, 이는 갑천2 지점의 지표수 질산성 질소 부하량인 9.2 ton of $NO_{3}{^-}-N/km^{2}$의 59%에 해당하는 값이다. 기저유출되는 질산성질소의 계절변화는 월별 질산성질소 부하량을 월별기저유출량으로 나누어 구하였는데, 우기시 질산성 질소의 기저유출농도가 높은 것으로 나타났다. 이 연구를 통하여 지하수 수질 모니터링이 지표수 수질 관리에 필요함을 알 수 있다.

진주시(晉州市) 생활하수(生活下水)가 남강(南江) 수질오염(水質汚染)에 미치는 영향(影響) (The Influence of the Sewage in Jinju City on the Water Pollution of the Nam River)

  • 하호성;허종수
    • 한국환경농학회지
    • /
    • 제2권2호
    • /
    • pp.90-97
    • /
    • 1983
  • 진주시내(晋州市內) 생활하수(生活下水)의 수질실태(水質實態)를 파악(把握)하여 그것이 남강(南江) 수질오염(水質汚染)에 미치는 영향을 검토(檢討)함으로써 남강(南江) 수질보전대책(水質保全對策) 수립(樹立)에 대(對)한 삼고자료(參考資料)를 제공(提供)코자 진주시내(晋州市內) 생활하수(生活下水)의 주요(主要) 5개(個) 배출구역(排出區域)과 진양호(晋陽湖) 및 남강(南江) 각(各) 1 개(個) 지점(地點)의 수질(水質)을 분석(分析)하였다. 1) 진주시(晋州市) 5개(個) 하수구역(下水區域) 배출수질(排出水質)의 각(各) 성분(成分) 평균치(平均値)는 pH 7.1, DO 2.3 ppm, BOD 126.2ppm, COD 123.7ppm, 탁도(濁度) 22.3ppm, $NH_4^+-N 9.3 ppm$, 알카리도 121ppm 경도(硬度) 121ppm, Cl- 44.3ppm, $SO_4--$ 88.9 ppm, Pb 0.0052 ppm, Zn 0.0079 ppm, Cu 0.0124ppm, Mn 0.0050 ppm 이었다. 2) 남강(南江)의 1일(日) 총(總) BOD 부하량(負荷量)은 14.80 ton이었으며 이 중 남강상류(南江上流)인 진양호(晋陽湖)로부터 6.94Ton, 그리고 진주시(晋州市) 下水(下水)로부터 4.93 ton이 류입(流入)되고 있었다. 따라서 하수(下水)가 차지하는 BOD 부하량(負荷量)은 33.3%였다. 3) 하수중(下水中)의 중김속함량(重金屬含量)은 낮아 남강(南江) 수질오염(水質汚染)에 그리 큰 영향을 미치지 않을 것이나 암모니아태(態) 질소(窒素)가 대단히 높아 농업(農業) 용수(用水)로 이용(利用)하기에는 불적당(不適當)할 것이로 사료(思料)된다. 4) 남강수질(南江水質)의 오염도(汚染度)를 농업용수기준치인 BOD 8ppm 이하(以下)로 줄이기 위해서는 진양호(晋陽湖) 남강(南江)댐에서의 방류량(放流量)을 $1,900,000 ^3$/일(日) 이상(以上)으로 조절해야 할 것으로 본다.

  • PDF

우리나라 인공호의 부영양화 평가 및 예측에 관한 연구

  • 김재윤
    • 한국환경과학회지
    • /
    • 제7권4호
    • /
    • pp.441-450
    • /
    • 1998
  • The purpose of this study is to evaluate and to predict of eutrophication in lakes by using VollenweiderGECD model and total phosphorus concentration and inflow rate which were measurded in 1993-1996. The results of study was as follows. The annual total phosphorus loading from the watershed was calculated to be 181-195tP /yr at lake Soyang, 591-680tP/yr at lake Chungju, 420-466tP/yr at lake Taechong, 229-278tP/yr at lake Andong, 103-106tP/yr at lake Hapchon, 57-59tP/yr at lake Imha, 194-244tP/yr at lake Namgang, 8386tP /yr at lake Chuam, 99-109tP /yr at lake Somjin. These are discharged, for the most parts, from population and ftshfarm facility. TP loading on the surface area at lake Soyang was 3.0lgP/$m^2$/yr, 2.82gP/$m^2$/yr, 2.84gP/$m^2$/yr, 3. 03gP/$m^2$/yr, at lake Chungju 7.91gP/$m^2$/yr, 6.87gP/$m^2$/yr, 7.38gP/$m^2$/yr, 7.l8gP/$m^2$/yr, at lake Taechong 6.7lgP/$m^2$/yr, 7.25gP/$m^2$/yr, 7.24gP/$m^2$/yr, 6.53gP/$m^2$/yr and TP loading on the surface area of Nakdong river basin, that is, lake Andong, Imha, Hapchon and Namgang were 5.39gP/$m^2$/yr, 4.47gP/$m^2$/yr, 4. 56gP/$m^2$/yr, 4.45gP/$m^2$/yr and 2.20gP/$m^2$/yr, 2.23gP/$m^2$/yr, 2.24gP/$m^2$/yr, 2.l7gP/$m^2$/yr and 4.50gP/$m^2$/ yr, 4.50gP/$m^2$/yr, 4.54gP/$m^2$/yr, 4.43gP/$m^2$/yr and 8.25gP/$m^2$/yr, 8.48gP/$m^2$/yr, 8.48gP/$m^2$/yr, 10. 39gP/$m^2$/yr respectively. Also those of lake Chuam was 2.51gP/$m^2$/yr, 2.61gP/$m^2$/yr, 2.52gP/$m^2$/yr, 2. 54gP/$m^2$/yr and TP loading on the surface area at lake Somjin was analysed 4.09gP/$m^2$/yr, 4.l0gP/$m^2$/yr, 3.98gP/$m^2$/yr,3.73gP/$m^2$/yr. The tropic states of nine lakes can be assessed as eutrophy because phosphorus loading exceeds the critical phosphorus loading by Vollenwelder-GECD model.

  • PDF