• Title/Summary/Keyword: Discharge pressure

Search Result 1,467, Processing Time 0.025 seconds

Effect of Injection Pressure on the Flash Boiling Spray from Simple Orifice Nozzle (인젝터 압력이 단공노즐 감압비등 분무에 미치는 영향)

  • Lee, Hyunchang;Cha, Hyunwoo;Kang, Donghyeon
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • Flash boiling occurs in a couple of modern engineering systems and understanding its mechanism is important. In this experimental study, discharge coefficient of flash boiling spray from simple orifice nozzle was measured, and backlight imaging was acquired at injection pressure to 6.0 bar and temperature to 163℃ for the purpose. Pressurized water by pump was used for working fluid and was heated by electric heater and ejected through simple orifice nozzle diameter of 0.5 mm. High speed camera with long distance microscope was used for backlight imaging in two FoV having magnification of 3.3 and 0.64. The decrease of discharge coefficient according to degree of superheating and evolution of flash boiling spray imaged at various pressure and temperature were explained by the pressure field inside the injector.

Application of Optimal Design Method to Agent Discharge Flow Calculation of Gaseous Fire Extinguishing Systems (최적설계법을 응용한 가스계 소화설비의 약제방출량 산출)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.51-56
    • /
    • 2015
  • In this study, optimal design methods were applied to the agent discharge flow of clean agent fire extinguishing systems. The methods combined optimal design theory and engineering theory for engineering analysis in a design program or coast savings in value engineering. Optimal design parameters were determined to optimize the agent discharge flow based on the design theory of the clean agent fire extinguishing systems and the theory of optimal design. The design factors were verified in regard to suitability for the performance of fire extinguishing systems. The results provide a foundation for optimal design method methods in other fire extinguishing systems. Optimization of the agent discharge flow of the discharge nozzle was confirmed by the constraints on the inner diameter of the discharge nozzle and the pipe, agent arrival time, flow, and pressure variation of the agent. The deviation of discharge pressure and agent time of the agent discharge nozzle were found to correlate with the pressure variation.

Study on Flow Analysis of Three-Dimensional Screw Propeller With Respect to Rotational Speed Variable

  • Moon, Byung-Young;Sun, Min-Young;Lee, Ki-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.500-507
    • /
    • 2014
  • This study aimed at conducting a flow analysis of the pressure distribution, discharge flow rate, and consequent thrust force according to the rotational speed of a three-dimensional screw propeller, and then investigating the effect of the rotational speed on the characteristics of the screw propeller by varying the relevant speed (3200, 2400, 1600, 800 rpm). In particular, the computational domain was considered by the analysis in the blades and outlet chamber, using boundary conditions. The difference between the minimum and maximum pressures was 5.5 MPa under the given conditions. The discharge flow rate at this pressure difference was on the level of 1956.67 kg/s, as a thrust force of 47083.7 T(N) was obtained. This study showed that the discharge flow rate linearly increased with the rotational speed, proportional to the RPM, while the thrust force was gradually and steadily increased with the relevant speed. In addition, it was proved that the occurrence of cavitation under the given conditions was closely related to the decrease in the durability of the screw propeller because the thrust force depends on the speed.

A Study on Improvement of Discharge Pressure Measurement of Indoor Fire Hydrant System (옥내소화전설비의 방수압 측정 개선에 관한 연구)

  • Min, Se-Hong;Jeong, Sang-Ho
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.67-72
    • /
    • 2012
  • Indoor fire hydrant facilities and sprinkler system applied to the initial fire suppression for buildings' interior fire are pivotal roles in extinguishing the fire in the early stage. The roof shapes of recent buildings combined with distinctive local culture and design are being constructed. Distinctive roof forms, i.e. gable roof buildings are planned and built, View point planning with the roof gardens also restricts measurement of the discharge pressure on the indoor fire hydrant, It is too narrow to gauge the water discharge pressure with deploying up to 5 water hoses. To resolve these problems improvement for the efficient management of indoor fire hydrant system and the effective early stage flame extinguishment is suggested.

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.

Experimental study on the discharge coefficients and cavitation of conical orifices (원추형 오리피스의 유출계수와 캐비테이션에 관한 실험적 연구)

  • Kim, Byeong-Chan;Yun, Byeong-Ok;Park, Bok-Chun;Jo, Nam-O;Ji, Dae-seong;Jeong, Baek-Sun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1371-1379
    • /
    • 1997
  • The high pressure drop is frequently required in the by-pass line of the pump or of the heat exchanger in power plants. However, cavitation produced by a high pressure drop could damage the pipe and pump blades. Conical orifices are adopted to reduce cavitation due to high pressure drop. The discharge coefficients of conical orifice plates were measured by weighing method in the standard water flow system. The discharge coefficients were larger when the ratios of thickness of orifice edge to throat diameter were larger. The noise generated from a conical orifice due to cavitation was measured with a sound level meter and a hydrophone. With increasing the bore diameter of the orifice, the sound pressure level or the noise level due to cavitation became higher. The noise level was suddenly increased at the inception of cavitation.

Surface Properties of Polyimide Modified with He/O2/NF3 Atmospheric Pressure RF Dielectric Barrier Discharge (대기압 RF DBD 방전으로 개질된 폴리이미드의 표면특성)

  • Lee, Su-Bin;Kim, Yoon-Kee;Kim, Jeong-Soon
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.543-549
    • /
    • 2006
  • Polyimides (PI) are treated with $He/O_2$ and $He/O_2/NF_3$ atmospheric pressure rf dielectric barrier discharge in order to investigate the roles of $NF_3$ that is one of the PI etching gases. Surface changes are analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurement. The surface roughness of PI and the ratio of C=O, which is hydrophilic functional group, is more increased by $He/O_2/NF_3$ discharge than by $He/O_2$ discharge. The C=O species on the PI surface is increased up to 30 percent with rf power. The surface roughness of PI is increased from 0.4 to 11 nm with rf power. The water drop contact angles on PI, however, are reduced from $65^{\circ}\;to\;9^{\circ}$ by plasma treatment independently of $NF_3$.

The Measurement of Three-Dimensional Temporal Behavior According to the Pressure in the Plasma Display Panel (플라즈마 디스플레이 패널에서 압력에 3차원 시간 분해 측정)

  • 최훈영;이석현;이승걸
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.476-480
    • /
    • 2003
  • In this paper, we have performed 3-dimensional time-resolving measurement of the Ne light emitted from the cell of plasma display panel(PDP) as a function of the pressure using the scanned point detecting system. From the temporal behavior results, we could analyze the discharge behavior of panel with Ne-Xe(4%) mixing gas and 300 torr, 400 torr and 500 torr pressure. At the top view of panel, the discharge of 300 torr panel starts at the 634 ns and ends at the 722 ns. The emission duration time is about 90 ns. The discharge of 400 torr panel starts at the 682 ns and ends at the 786 ns. the emission duration time is about 100 ns. Also, the discharge of 500 torr panel starts at the 770 ns and ends at the 826 ns. the emission duration time is about 56 ns. The discharge moves from inner edge of cathode electrode to outer cathode electrode forming arc type. In the side view of 300 torr, 400 torr and 500 torr an emission shows that the light is detected up to 180${\mu}{\textrm}{m}$, 150${\mu}{\textrm}{m}$ and 70${\mu}{\textrm}{m}$ height of barrier rib and the emission distribution of the 300 torr is wider than 400 torr, 500 torr.

Experimental Study on the Reduction of the Discharge Capacity of Vertical Drains (연직배수재의 통수능력 저감요인 분석을 위한 실험적 연구)

  • Kim, Chan-Kee;Chae, Young-Su;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.3-10
    • /
    • 2005
  • This paper aims at investigating the characteristics of discharge capacity according to lateral pressure, hydraulic gradient and deformation of drain materials. A series of experiments were conducted to achieve this objective. In experiments, fiver drain boards as well as harmonica and castle types of drain boards were installed in a rubber membrane, and clay in sully was filled around them. The test results showed that the harmonica type of drain boards have the greatest discharge capacity comparing to castle and fiber drain boards. The results also indicated that the hydraulic gradient has more effect on reduction of discharge capacity than the lateral pressure.

  • PDF