• Title/Summary/Keyword: Discharge machining

Search Result 324, Processing Time 0.023 seconds

The Coating Materials of Electrode Materials on Machinability of W-EDM (와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향)

  • 김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF

A Comparative Study of Transistor and RC Pulse Generators for Micro-EDM of Tungsten Carbide

  • Jahan, Muhammad Pervej;Wong, Yoke San;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.3-10
    • /
    • 2008
  • Micro-electrical discharge machining (micro-EDM) is an effective method for machining all types of conductive materials regardless of hardness. Since micro-EDM is an electro-thermal process, the energy supplied by the pulse generator is an important factor in determining the effectiveness of the process. In this study, an investigation was conducted on the micro-EDM of tungsten carbide (WC) to compare the performance of transistor and resistance/capacitance (RC) pulse generators in obtaining the best quality micro-hole. The performance was measured by the machining time, material removal rate, relative tool wear ratio, surface quality, and dimensional accuracy. The RC generator was more suited for minimizing the pulse energy, which is a requirement for fabricating micro-parts. The smaller-sized debris formed by the low-discharge energy of RC micro-EDM could be easily flushed away from the machined zone, resulting in a surface free of burrs and resolidified molten metal. The RC generator also required much less time to obtain the same quality micro-hole in WC. Therefore, RC generators are better suited for fabricating micro-structures, producing good surface quality and better dimensional accuracy than the transistor generators, despite their higher relative tool wear ratio.

Surface Characteristics of Tool Steel Machined Using Micro-EDM

  • Anwar, Mohammed Muntakim;San, Wong Yoke;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.74-78
    • /
    • 2008
  • High-speed tool steels are extensively used in tooling industries for manufacturing cutting tools, forming tools, and rolls. Electrical discharge machining (EDM) has been found to be an effective process for machining these extremely hard and difficult-to-cut materials. Extensive research has been conducted to identify the optimum machining parameters for EDM with different tool steels. This paper presents a fundamental study of the surface characteristics of SKH-51 tool steel machined by micro-EDM, with particular focus on obtaining a better surface finish. An RC pulse generator was used to obtain a better surface finish as it produces fine discharge craters. The main operating parameters studied were the gap voltage and the capacitance while the resistance and other gap control parameters were kept constant. A negative tungsten electrode was used in this study. The micro-EDM performance was analyzed by atomic force microscopy to determine the average surface roughness and the distance between the highest peak and lowest valley. The topography of the machined surface was observed using a scanning electron microscope and a digital optical microscope.

Gap Control Using Discharge Pulse Counting in Micro-EDM (미세 방전 가공에서의 방전 펄스 카운팅을 이용한 간극 제어)

  • Jung J.W.;Ko S.H.;Jeong Y.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.499-500
    • /
    • 2006
  • The electrode wear in micro-EDM significantly deteriorates the machining accuracy. In this regard, electrode wear needs to be compensated in-process to improve the product quality. Therefore, there are substantial amount of research about electrode wear. In this study a control method for micro-EDM using discharge pulse counting is proposed. The method is based on the assumption that the removed workpiece volume is proportional to the number of discharge pulses, which is verified from experimental results analyzing geometrically machined volume according to various number of discharges. Especially, the method has an advantage that electrode wear does not need to be concerned. The proposed method is implemented to an actual micro-EDM system using high speed data acquisition board, simple counting algorithm with 3 axis motion system. As a result, it is demonstrated that the volume of hole machined by EDM drilling can be accurately estimated using the number of discharge pulses. In EDM milling process a micro groove without depth variation caused by electrode wear could be machined using the developed control method. Consequently, it is shown that machining accuracy in drilling and milling processes can be improved by using process control based on the number of discharge pulses.

  • PDF

Development of Desktop Dry Electrical Discharge Machining (EDM) System and Experimental Performance Evaluations (데스크톱 건성 방전가공 시스템의 개발 및 실험적 성능평가)

  • Lee, Sang-Won;Oh, Young-Seok;Ahn, Soo-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.119-124
    • /
    • 2010
  • This paper addresses the design and fabrication of desktop die-sinking dry electrical discharge machining (EDM) system and its experimental performance analysis. The developed desktop dry EDM machine has the horizontal configuration with the size of $300{\times}200{\times}260mm$. The experimental performance analysis is conducted to investigate the effects of EDM conditions and dielectric gas temperature on the surface roughness of EDMed slots and number of EDM sparks. The experimental results demonstrate that low feed rate and large electrode displacement are good for better surface roughness and more number of EDM sparks. In addition, low temperature of dielectric gas results in better surface roughness.

Improvements of Electro Discharge Machining Process using Side Flushing Devices (방전가공시 측면 플러싱 장치를 활용한 가공성 향상)

  • Maeng Hee-young;Park Keun;Shin Seung-hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2006
  • The present works concerns a side flushing device for the improvement of the conventional Electric-Discharge Machining(EDM) process. In the EDM process, chips are usually generated as the workpiece is removed, and deposited between the electrode and the workpiece. This sediment degrades the surface finish of the machined product as well as the processing efficiency. In the present study, a flushing device with additional side injection equipments is proposed in order to remove the deposited chips effectively. Through numerical simulations, the validity of the proposed device is verified, and the influence of process parameters is investigated. Experiments have been also carried out in the die sinking EDM process. It was observed that the process efficiency and the surface finish are improved by virtue of the proposed flushing device.

A Study of Characteristics of the Wire-cut EDM Process in Aluminum Alloys (알루미늄합금의 와이어 컷 방전기공 특성에 과한 연구)

  • Lyu, Sung-Ki;An, Soon-Geon
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.21-25
    • /
    • 2004
  • This study deals with the characteristics of wire-cut EDM(Electrical Discharge Machining)process in aluminum alloys. Besides 2 series and 7 series of aluminum alloys for aerospace applications, porous aluminum is tested, which is used for sound absorbing matherial and interior and exterior material of building. Jinyoung JW-30 wire cutting machine was used in this experiment. Tap wate passed a filter and ionization was used as the discharging solution. An immerision method was applied as a cooling method because it separates chips effectively and machinability is good even with low value of electric current. The speed of fabrication was estimated by measuring the travel distance of the work piece and time spent for the movement. As pulse-on-time increased the fabrication speed decreased. On the other hand, as peak voltage of peak current increased the fabrication speed increased. In general 7075 aluminum alloy resulted in higher fabrication speed.

Fabrication of Copper Electrode Array and Test of Electrochemical Discharge Machining for Glass Drilling (유리의 미세 구멍 가공을 위한 구리 전극군 제작 및 전기 화학 방전 가공 시험)

  • Jung, Ju-Myoung;Sim, Woo-Young;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.297-299
    • /
    • 2003
  • In this paper, we present the fabrication of copper electrode array and test of electrochemical discharge machining for the fabrication of microholes on Borofloat33 glass. Copper electrode array is fabricated by the bonding of silicon upper substrate and lower substrate and copper electroplate. The silicon upper electrode having microholes fabricated by ICP-RIE is the mold of copper electroplate. The lower substrate is used as the seed layer for copper electroplate after Au - Au thermocompression bonding with the upper substrate.

  • PDF

Influence of the Electrical Conductivity of Dielectric on WEDM of Sintered Carbide

  • Kim, Chang-Ho;Kruth, Jean-Pierre
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1676-1682
    • /
    • 2001
  • This work deals with the electrical conductivity of dielectric and cobalts percentage on output parameters such as metal removal rate and surface roughness value of sintered carbides cut by wire-electrical discharge machining (WEDM). To obtain a precise workpiece with good quality, some extra repetitive finish cuts along the rough cutting contour are necessary, Experimental results show that increases of cobalt amount in carbides affects the metal removal rate and worsens the surface quality as a greater quantity of solidified metal deposits on the eroded surface. Lower electrical conductivity of the dielectric results in a higher metal removal rare as the gap between wire electrode and workpiece reduced. Especially, the surface characteristics of rough-cut workpiece and wire electrode were analyzed too. To obtain a good surface equality without crack, 4 finish-cuts were necessary reducing fille electrical energy and the offset value.

  • PDF

Die-Sinking Electrical Discharge Machining with Dielectric Fluid Ejection System through the Inside of the Electrode (전극봉내 방전유 분산시스템에 의한 형조방전기공)

  • 왕덕현;우정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Experimental study if die-sinking electrical discharge machining(EDM) was conducted with rotating electrode system including inside hole for increasing the material removal rate(MRR). With the help of dielectric fluid flow through the inside according to the different internal diameter of the hole, the molten workpiece debris could be removed and flushed out during the EDM, Cold die alloy(SKD-1) was executed for different peak current and duty factor. From this study, the MRR was found to be increased with the peak current. The more MRR was obtained for the case of electrode inside diam-eter of 10 mm, but the MRR was decreased as the diameter near at the 4mm and 6mm. The values of surface roughness and roundness were analyzed under various conditions, and these were affected by the inside diameter change of electrode.

  • PDF