• Title/Summary/Keyword: Discharge loading

Search Result 172, Processing Time 0.024 seconds

Predicting Mechanical Response of Multilayered Aluminum Sheet Using Finite Element Analysis (유한요소해석 연계 알루미늄 다층판재의 기계적 거동 예측)

  • Sung, J.Y.;Kim, M.H.;Bong, H.J.;Lee, K.S.;Kim, M.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.347-355
    • /
    • 2020
  • The mechanical responses of multilayered aluminum sheet fabricated by roll bonding, i.e., A1050/A3004 (65% A1050, 35% A3004 by thickness), were investigated via combined experiment and finite element (FE) analysis. The mechanical properties were measured using uniaxial tensile tests in various loading directions for the multilayered sheet. The corresponding tests for individual layers were also conducted. The testing samples were prepared by wire electro discharge machining (EDM). Stress-strain curves and Lankford coefficients of the multilayered sheet were then predicted by FE simulations. The measured mechanical properties of the individual layers were utilized as inputs for the simulation. Two yield functions, i.e., isotropic von-Mises and anisotropic non-quadratic Hill1948, were employed. Predicted results were compared with the experimental data and further discussed.

Oxidation of Isopropyl Alcohol in Air by a Catalytic Plasma Reactor System (촉매-플라즈마 반응 시스템을 이용한 아이소프로필 알코올 산화)

  • Jo, Jin Oh;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.531-537
    • /
    • 2014
  • A catalytic plasma reactor was employed for the oxidation of isopropyl alcohol (IPA) classified as a volatile organic compound (VOC). Copper oxide (Cu : 0.5% (w/w)) supported on a multichannel porous ceramic consisting of ${\alpha}-Al_2O_3$ was used as a catalyst, which was directly exposed to the plasma created in it. The effects of discharge voltage and reaction temperature on the concentrations of IPA and its byproducts were examined to understand the behavior of the catalytic plasma reactor. Without thermal insulation, the reactor temperature increased up to $120^{\circ}C$ at an applied voltage of 17 kV (discharge power : 28 W), and the IPA at a flow rate of $1L\;min^{-1}$ ($O_2$ : 10% (v/v); IPA : 1000 ppm) was completely removed. At temperatures below $120^{\circ}C$, however, besides the desirable product $CO_2$, several unwanted byproducts such as acetone, formaldehyde and CO were also formed from IPA. On the other hand, when the reactor was thermally insulated, the plasma discharge increased the temperature up to $265^{\circ}C$ under the same condition and most of IPA was oxidized to $CO_2$. Without loading CuO on the ceramic support, the plasma discharge in the thermally insulated reactor produced nearly equal amounts of $CO_2$ and CO. On comparison, with the catalyst alone (temperature : $265^{\circ}C$), more than 70% of the removed IPA was simply converted into another type of VOC (acetone), indicating that the catalyst assisted by the plasma is more effective in the oxidation of IPA than that of the catalyst-alone process.

Unit Mass Estimation and Analysis from Fiber Dyeing and Finishing Facility Nearby Nakdong River Basin (낙동강수계에서 섬유염색 및 가공 업체에 대한 공정별 원단위산정 및 분석)

  • Gu, Jung-Eun;Nah, Dong-Hoon;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.765-774
    • /
    • 2009
  • Fiber Dyeing and Finishing facility has been recognized as an important pollution source due to its consumption of large volumes of water and chemicals. Unit mass discharge for the conventional water quality parameters such as flowrate, SS, $BOD_5,\;COD_{Mn},\;COD_{Cr}$, TN, TP were estimated. To represent the respective industries, three companies were carefully selected based on its manufacturing goods, flowrate and location at various unit operations and processes. More than 90% of decrease in unit mass estimation between influent and effluent of BOD was observed. But the values themselves were similar to those of Fiber Manufacturing facility due to the high loadings of organic matter. Biodegradability of influent was almost three times higher than that of effluent. Unit mass discharge estimations of unit process (estimated in this study) based on space, products and raw material were similar to those of composite process (estimated by National Institute of Environmental Research), while big difference was observed in the other factors. Unit mass discharge factors calculated in this study can be used as the reference for the estimation of water pollution loading costs in Nakdong river basin. For the effective water pollution control and management, it is essential to characterize the various types of water quality parameters from the effluents of individual industrial wastewater treatment plants.

Electrical Discharge Plasma in a Porous Ceramic Membrane-supported Catalyst for the Decomposition of a Volatile Organic Compound (다공질 세라믹지지 촉매 상에서의 플라즈마 방전을 이용한 휘발성유기화합물의 분해)

  • Jo, Jin-Oh;Lee, Sang Baek;Jang, Dong Lyong;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.433-437
    • /
    • 2013
  • Electrical discharge plasma created in a multi-channel porous ceramic membrane-supported catalyst was applied to the decomposition of a volatile organic compound (VOC). For the purpose of improving the oxidation capability, the ceramic membrane used as a low-pressure drop catalyst support was loaded with zinc oxide photocatalyst by the incipient wetness impregnation method. Alternating current-driven discharge plasma was created inside the porous ceramic membrane to produce reactive species such as radicals, ozone, ions and excited molecules available for the decomposition of VOC. As the voltage supplied to the reactor increased, the plasma discharge gradually propagated in the radial direction, creating an uniform plasma in the entire ceramic membrane above a certain voltage. Ethylene was used as a model VOC. The ethylene decomposition efficiency was examined with experimental variables such as the specific energy density, inlet ethylene concentration and zinc oxide loading. When compared at the identical energy density, the decomposition efficiency obtained with the zinc oxide-loaded ceramic membrane was substantially higher than that of the bare membrane case. Both nitrogen and oxygen played an important role in initiating the decomposition of ethylene. The rate of the decomposition is governed by the quantity of reactive species generated by the plasma, and a strong dependence of the decomposition efficiency on the initial concentration was observed.

Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir (얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.180-192
    • /
    • 2004
  • This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Impact of Media Type and Various Operating Parameters on Nitrification in Polishing Biological Aerated Filters

  • Ha, Jeong-Hyub;Ong, Say-Kee;Surampalli, R.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 2010
  • Three biological aerated filters (BAFs) composed of a PVC pipe with a diameter of 75 mm were constructed and operated at a waste-water temperature at $13^{\circ}C$. The media used for each BAF were: 5-mm gravel; 5-mm lava rock; 12.5-mm diameter by 15-mm long plastic rings, all with a media depth of 1.7 m. The feedwater, which simulated the effluent of aerated lagoons, had influent soluble chemical oxygen demand (sCOD) and ammonia concentrations of approximately 50 and 25 mg/L, respectively. For a hydraulic retention time (HRT) of two hours without recirculation, ammonia percent removals were 98.5, 98.9, and 97.8%, for the gravel, lava rock, and plastic rings, respectively. By increasing the effluent recirculation from 100 to 200% for an HRT of one hour, respective ammonia removals improved from 90.1 to 96, 76.5 to 90, and 65.3 to 79.5% for gravel, lava rock, and plastic rings. Based on the ammonia and sCOD loadings for different HRTs, the estimated maximum ammonia loading was approximately 0.6 kg $NH_3-N/m^3$-day for the three BAFs of different media types. The zero-order biotransformation rates for the BAF with gravel were found to be higher than the lava rock and plastic ring media. The results ultimately showed that BAF can be used as an add-on system to aerated lagoons or as a secondary treatment unit to meet ammonia discharge limits.

A Study on Customary Practices in Iron Ore and Steel Product Shipping Contract - Case of Long-term Shipping Contracts in Korea

  • Kim, Hyungjun;Kim, Jae-bong;Oh, Yong-sik
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.128-135
    • /
    • 2020
  • Long-term shipping contracts represent the cooperative and coexisting relationships between the shipping and steel industries. Yet, differences between the contract forms for iron ore and steel products have emerged. Specifically, the large proportion of consecutive voyage charters (CVC) is being applied in the iron ore trade, whereas the contract of affreightment (COA) is proportionally higher for shipping steel products. The literature review and in-depth interviews in this study identified through the research model, the characteristics of the shipping and market structure in both markets have significantly contributed to the preference of different long-term contracts. It has been determined that the mutual oligopoly market structure and the characteristics of shipping such as, the small number of suitable vessels in the market, the single fixed load/discharge ports, the long-distance voyages, and the potential risks for fatal accidents because of cargo liquefaction, for the iron ore trade, provide higher contribution to the preference of CVC contracts. In contrast, the consignor oligopoly market structure and the shipping characteristics, such as the greater number of suitable vessels available in the market, the variation in ports, the cargo quantity per shipment, the various load/discharge ports, and the need for experienced carriers for steel product loading in the steel product trade has shown higher preference on the COA contracts as the consignors with superiority over the shipowners, resulting in favorable contract types and conditions for the consignors.

Development of Replacing Material for Sand Mat by Using Precious Slag Ball (풍쇄 슬래그를 이용한 샌드매트 대체재 개발에 관한 연구)

  • Shin, Eun-Chul;Lee, Woon-Hyun;Yoo, Jeong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2009
  • Recently, new development projects are being carried out with the soft ground located along the West coast and the South coast. As soft grounds have complex engineering properties that the load bearing capacity is low and high compressibility, it needs to solve this problems Prior to structures are constructed by the method of improvement of soft ground. The sand mat is usually being used for improvement of soft ground as a horizontal drain material and loading base. But, as the volume is enormous and an amount of demanded sand is increased, it is state of short in supply. This paper presents the feasibility study to use of precious slag ball instead of sand mat as the replacing material through the basic soil property tests, the medium of discharge capacity test and analysis of settlement character.

  • PDF

Development of Swine Liquid Manure Spread System for Greenhouse (비닐하우스용 돈분뇨 액비살포장치 개발)

  • Oh, I.H.;Kim, W.G.;Song, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • It is investigated the development of swine liquid manure spreading system for a polyethylene film (PE vinyl) based greenhouse used for planting vegetables. These types of vinylhouses are normally six to eight meters wide; the spread system must be contained and capable of operating within this area. The system we designed for use here consisted of the following parts: 1) a reel for loading the hose, 2) hydraulic motor and cylinder to generate hydraulic pressure, 3) discharge unit, and 4) a frame with a 3-point hiteh link to the tractor. With this system, there are two types of hoses that can be used, a flexible flat hose that can be mounted directly to a tractor or a solid firm round hose which usually separated from the tractor. In either case, the discharge unit remains on the tractor. It is found that by using our spread system overall efficiency was 5 times greater than spreading swine liquid manure manually.