• Title/Summary/Keyword: Discharge Tube

Search Result 335, Processing Time 0.026 seconds

Real time control special quality research for $CO_2$ laser's output change rate stability for accumulation style surgical operation rehabilitation of ventriculus that use Photosensor (Photosensor를 이용한 재활 치료형을 위한 $CO_2$ laser 의 출력변동율 안정을 위한 실시간 제어특성 연구)

  • Kim, Whi-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1015-1016
    • /
    • 2006
  • The important parameters deciding the fluctuation of Accumulation style surgical operation of ventriculus laser beam are smoothing capacitor, frequency and he characteristics of laser resonator. In this thesis, we control the fluctuation of medical $CO_2C$ laser in realtime by changing Duty-Ratio of IGBT and switching frequency with fixed the smoothing capacitor to improve the fluctuation of laser beam. We detect the light on laser resonator using a CdS photo sensor to improve ripple factor of laser beam and feedback fluctuated signals refined by a band pass filter into the control circuit to stabilize fluctuation actively. There is much to be desired in the realtime controlling technique of the light on Accumulation style surgical operation of ventriculus laser discharge tube in electrical signal. We propose switching control technique with microprocessor and photo sensing technique by controlling switch devices optimum operation and feedback signals detected by a photo sensor into the laser power supply in order to improve ripple factor of the $CO_2$ laser beam.

  • PDF

A Study on Dynamic Simulation of a Hybrid Parallel Absorption Chiller (병렬식 하이브리드 흡수식 냉온수기 동특성 시뮬레이션 연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.630-635
    • /
    • 2008
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism have been modeled. Flow discharge coefficients of the valves and the pumps were optimized for the double-effect mode with solar-heated water circulated. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. And the cases of the double mode with and without the solar energy were compared. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the single mode utilizing the solar energy only is not practical. It is suggested to operate the system in the double mode and the flow rate control system adaptive to variable solar energy input has to be developed.

  • PDF

A Study on the Characteristics of the High Concentration Ozone Generator for the Semiconductor Wafer Cleaning with the Ozone Dissolved De-ionized Water (반도체 웨이퍼의 오존 수(水) 세정을 위한 고농도 오존발생장치 특성 연구)

  • 손영수;함상용;문세호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.579-585
    • /
    • 2003
  • Recently the utilization of the ozone dissolved de-ionized water(DI-O3 water) in semiconductor wet cleaning process to replace the conventional RCA methods has been studied. In this paper, we propose the water-electrode type ozone generator which has the ozone gas characteristics of the high concentration and high purity to produce the high concentration DI-O3 water for the silicon wafer surface cleaning process. The ozone generator has the dual dielectric tube structure of silent discharge type and the water is both used to electrode and cooling water. We investigate the performance of the proposed ozone generator which has the design goal of the concentration of 7[wt%] and ozone generation quantity of 6[g/hr] at flow rate of 1[$\ell$/min). The experiment results show that the water electrode type ozone generator has the characteristics of 8.48[wt%] of concentration, 8.08[g/hr] of generation quantity and 76.2[g/kWh] of yield and it's possible to use the proposed ozone generator for the DI-O3 water cleaning process of silicon wafer surface.

A Study on the Optimal Design of Gas Spring for Vehicle (자동차용 GAS SPRING의 최적 설계에 관한 연구)

  • 김영범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.39-45
    • /
    • 1998
  • Gas springs have been widely used in motor vehicles as well as in most areas of industry. Instead of coil springs, these gas springs are easily opreated to open(extension process) or close (compression process) the doors because $N_2$ gas with high pressure and oil are charged in tube. Most of manufacturers are using the trial & error method in order to decide its specification(reaction force, damping force), which tends to waste time and money. Therefore, gas springs have been improved by properly changing the control pressure of $N_2$ Gas with its mounting location and weight to maximize its effect and to minimize its space. Although it has been researched on damping structure to minimize impact which is applied to vehicle when its back door is fully opened, the characteristics of damping structure are not known clearly. There(ore, this paper will not only clearly define the effect of important factors(open & close force)for gas springs through theoretical analysis but also provide optimum design specification through development of program to avoid traditional method of specification determination such as the trail It error method which is widely used in whole industries including automotive industry.

  • PDF

Clinical Study of Children Using Home Mechanical Ventilation (가정용 인공 호흡기를 사용하는 소아의 임상적 고찰)

  • Ahn, Young Joon;Lee, Seung Hyeon;Kim, Hyo-Bin;Park, Seong Jong;Ko, Tae Sung;Hong, Soo Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.4
    • /
    • pp.401-405
    • /
    • 2005
  • Purpose : The use of mechanically-assisted ventilators at home reduces morbidity and improves the quality of life in children with chronic respiratory failure. But in Korea there is no clinical data of children with home mechanical ventilation. We investigated ventilator types, duration, the causes of failure or death, and the cost needed for care. Methods : We retrospectively analyzed the medical records of 21 children who were admitted and who applied for home mechanical ventilation at the Pediatric Intensive Care Unit in Asan Medical Center. Phone interviews took place after discharge. and interviewed by phone after discharge. Results : The median age was 31 months; the median duration with ventilator was 25 months. Underlying diseases were 16 neuromuscular diseases, one metabolic disease and four chronic respiratory diseases. The types of ventilator were pressure and volume type(16 and five patients, respectively). The frequency of ventilation failure was once per 19 months. Weaning could be performed in three cases. Frequencies of admission after receiving ventilators were 1.7 times per year; the most common cause was pneumonia. Nine patients(43%) died; four of them died because of endotracheal tube obstruction. The costs for medical care were about 1,110,000 won per month. Conclusion : There is an increment in the numbers of individuals who need mechanical ventilation support. The most common cause of death was endotracheal tube obstruction. The most important problem for the patients was medical cost. There needs to be more interest in patients with ventilator and social welfare systems to support their families need to be prepared.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.

Development of 80 kW RF Thermal Plasma Torch System for Mass Production and Research of Si Nano-Powder Manufacturing Process (양산용 80 kW급 RF Plasma Torch System 개발 및 Si 나노분말 제조 공정 연구)

  • Song, Seok-Kyun;Son, Byungkoo;Kim, Byunghoon;Lee, Moonwon;Sin, Myungsun;Choi, Sunyong;Lee, Kyu-Hang;Kim, Seong-In
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.2
    • /
    • pp.66-78
    • /
    • 2013
  • In order to develop of 80 kW RF plasma torch system, we achieved three-dimensional simulations for the extraction of more information as temperature in torch and fluid behavior analysis, etc. The position of powder injection tube, the plasma discharge characteristics with various input current and various length of ceramic tube, and the plasma temperature characteristics with process gas flow rate such those was simulated. RF thermal plasma torch designed by simulation was manufactured that was measured to the maximum of 89.3 kW power. The mass production using developed 80 kW RF thermal plasma torch system were investigated by characteristics manufactured of Si nano powder. The mass-production level of Si nano-powder was average of 539 g/hr and high yield rate of 71.6%, respectively. The particle size distribution $D_{99}/D_{50}$ of manufacturing nano-powder was investigated to 1.98 as a good uniform.

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Bronchoscopic Ethanolamine Injection Therapy in Patients with Persistent Air Leak from Chest Tube Drainage

  • Lim, Ah-Leum;Kim, Cheol-Hong;Hwang, Yong-Il;Lee, Chang-Youl;Choi, Jeong-Hee;Shin, Tae-Rim;Park, Yong-Bum;Jang, Seung-Hun;Park, Sang-Myeon;Kim, Dong-Gyu;Lee, Myung-Goo;Hyun, In-Gyu;Jung, Ki-Suck;Shin, Ho-Seung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.5
    • /
    • pp.441-447
    • /
    • 2012
  • Background: Chest tube drainage (CTD) is an indication for the treatment of pneumothorax, hemothroax and is used after a thoracic surgery. But, in the case of incomplete lung expansion, and/or persistent air leak from CTD, medical or surgical thoracoscopy or, if that is unavailable, limited thoracotomy, should be considered. We evaluate the efficacy of bronchoscopic injection of ethanolamine to control the persistent air leak in patients with CTD. Methods: Patients who had persistent or prolonged air leak from CTD were included, consecutively. We directly injected 1.0 mL solution of 5% ethanolamine oleate into a subsegmental or its distal bronchus, where it is a probable air leakage site, 1 to 21 times using an injection needle through a fiberoptic bronchoscope. Results: A total of 15 patients were enrolled; 14 cases of spontaneous pneumothorax [idiopathic 9, chronic obstructive pulmonary disease (COPD) 3, post-tuberculosis 2] and one case of empyema associated with broncho-pleural fistula. Of these, five were patients with persistent air leak from CTD, just after a surgical therapy, wedge resection with plication for blebs or bullae. With an ethanolamine injection therapy, 12 were successful but three (idiopathic, COPD and post-tuberculosis) failed, and were followed by a surgery (2 cases) or pleurodesis (1 case). Some adverse reactions, such as fever, chest pain and increased radiographic opacities occurred transiently, but resolved without any further events. With success, the time from the procedure to discharge was about 3 days (median). Conclusion: Bronchoscopic ethanolamine injection therapy may be partially useful in controlling air leakage, and reducing the hospital stay in patients with persistent air leak from CTD.