• Title/Summary/Keyword: Discharge Mechanism

Search Result 337, Processing Time 0.032 seconds

Prediction of a Debris Flow Flooding Caused by Probable Maximum Precipitation (가능 최대강수량에 의한 토석류 범람 예측)

  • Kim, Yeon-Joong;Yoon, Jung-Sung;Kohji, Tanaka;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.115-126
    • /
    • 2015
  • In recent years, debris flow disaster has occurred in multiple locations between high and low mountainous areas simultaneously with a flooding disaster in urban areas caused by heavy and torrential rainfall due to the changing global climate and environment. As a result, these disasters frequently lead to large-scale destruction of infrastructures or individual properties and cause psychological harm or human death. In order to mitigate these disasters more effectively, it is necessary to investigate what causes the damage with an integrated model of both disasters at once. The objectives of this study are to analyze the mechanism of debris flow for real basin, to determine the PMP and run-off discharge due to the DAD analysis, and to estimate the influence range of debris flow for fan area according to the scenario. To analyse the characteristics of debris flow at the real basin, the parameters such as the deposition pattern, deposit thickness, approaching velocity, occurrence of sediment volume and travel length are estimated from DAD analysis. As a results, the peak time precipitation is estimated by 135 mm/hr as torrential rainfall and maximum total amount of rainfall is estimated by 544 mm as typhoon related rainfall.

Total Simulation for the Noise Prediction of Motor Driving System in EV/HEV System (EV/HEV용 모터 구동 시스템의 Noise 예측을 위한 통합 시뮬레이션에 대한 연구)

  • Gwon, O-Hyun;Lee, Jae Joong;Kim, Kwang-Ho;Ahn, Ji-Hyun;Kweon, Hyuck-Su;Kim, Mi-Ro;Jung, Sang-Yong;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.710-721
    • /
    • 2013
  • The noise prediction of motor driving system is one of the most important parts in EV/HEV, as the number of power electronic devices increases. This paper describes the mechanism of noise making process and proposes a simulation model of motor driving system for the prediction of the conducted noise. Theoretical calculations and model based simulations were carried out. DOD-dependent-battery parameters were extracted by AC analysis, and an inverter model including dynamic diode was used. Furthermore, 2-D EM tool was used for the motor modeling and was combined with the circuit models of battery and inverter. The simulated voltages, currents and spectrums in the motor driving system showed qualitatively meaningful results, suggesting the validness of the suggested modeling methods.

Usefulness of presepsin as a prognostic indicator for patients with trauma in the emergency department in Korea: a retrospective study

  • Si Woo Kim;Jung-Youn Kim;Young-Hoon Yoon;Sung Joon Park;Bo Sun Shim
    • Journal of Trauma and Injury
    • /
    • v.37 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • Purpose: Trauma is an important public health concern, and it is important to increase the survival rate of patients with trauma and enable them to return to society in a better condition. Initial treatment in the emergency department (ED) is closely associated with the prognosis of patients with trauma. However, studies regarding laboratory biomarker tests that can help predict the prognosis of trauma patients are limited. Presepsin is a novel biomarker of inflammation that can predict a poor prognosis in patients with sepsis. This study aimed to determine whether presepsin could be used as a prognostic indicator in patients with polytrauma. Methods: The study included patients with trauma who had visited a single regional ED from November 2021 to January 2023. Patients who had laboratory tests in the ED were included and analyzed retrospectively through chart review. Age, sex, injury mechanism, vital signs, surgery, the outcome of ED treatment (admission, discharge, transfer, or death), and trauma scores were analyzed. Results: Overall, 550 trauma patients were enrolled; 59.1% were men, and the median age was 64 years (interquartile range, 48.8-79.0 years). Patients in a hypotensive state (systolic blood pressure, <90 mmHg; n=39) had higher presepsin levels (1,061.5±2,522.7 pg/mL) than those in a nonhypotensive state (n=511, 545.7±688.4 pg/mL, P<0.001). Patients hospitalized after ED treatment had the highest presepsin levels (660.9 pg/mL), followed by those who died (652.0 pg/ mL), were transferred to other hospitals (514.9 pg/mL), and returned home (448.0 pg/mL, P=0.041). Conclusions: Serum presepsin levels were significantly higher in trauma patients in a hypotensive state than in those in a nonhypotensive state. Additionally, serum presepsin levels were the highest in hospitalized patients with trauma, followed by those who died, were transferred to other hospitals, and returned home.

Seasonal Variation and Natural Attenuation of Trace Elements in the Stream Water Affected by Mine Drainage from the Abandoned Indae Mine Areas (인대광산 지역 광산배수에 영향을 받은 하천에서 미량원소의 계절적인 수질변화와 자연저감)

  • Kang, Min-Ju;Lee, Pyeong-Koo;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.277-293
    • /
    • 2007
  • Seasonal and spatial variations in the concentrations of trace elements, pH and Eh were found in a creek watershed affected by mine drainage and leachate from several waste rock dumps within the As-Pb-rich Indae mine site. Because of mining activity dating back to about 40 years ago and rupture of the waste rock dumps, this creek was heavily contaminated. Due to the influx of leachate and mine drainage, the water quality of upstream reach in this creek was characterized by largest seasonal and spatial variations in concentrations of Zn(up to $5.830 mg/{\ell}$), Cu(up to $1.333 mg/{\ell}$), Cd(up to $0.031 mg/{\ell}$) and $SO_4^{2-}$(up to $173 mg/{\ell}$), relatively acidic pH values (3.8-5.1) and highly oxidized condition. The most abundant metals in the leachate samples were in order of Zn($0.045-13.909 mg/{\ell}$), Fe($0.017-8.730mg/{\ell}$), Cu($0.010-4.154mg/{\ell}$) and Cd($n.d.-0.077mg/{\ell}$), with low pH(3.1-6.1), and high $SO_4^{2-}$(up to $310 mg/{\ell}$). The mine drainage also contained high concentrations of Zn, Cu, Cd and $SO_4^{2-}$ and remained constantly near-neutral pH values(6.5-7.0) in all the year. While the leachate and mine drainage might not affect short-term fluctuations in flow, it may significantly influence the concentrations of chemicals in the stream. The abundance and chemistry of Fe-(oxy)hydroxide within this creek indicated that the Fe-(oxy)hydroxide formation could be responsible for some removal of trace elements from the creek waters. Spatial and seasonal variations along down-stream reach of this creek were caused largely by the influx of water from uncontaminated tributaries. In addition, the trace metal concentrations in this creek have been decreased nearly down to the background level at a short distance from the discharge points without any artificial treatments after hydrologic mixing in a tributary. The nonconservative(i.e. precipitation, adsorption, oxidation, dissolution etc.) and conservative(hydrologic mixing) reactions constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace elements to rivers.

Distribution and remediation design of heavy metal contamination in farm-land soils and river deposits in the vicinity of the Goro abandoned mine (고로폐광산 주변 농경지 토양 및 하천 퇴적토의 중금속 오염 분포 및 복원 대책 설계)

  • 이민희;최정찬;김진원
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.89-101
    • /
    • 2003
  • River deposits and farmland soils were analyzed to investigate the pollution level of heavy metals in the vicinity of the Goro abandoned Zn-mine. Surface (0-40 cm) and subsurface (40-100 cm) soils were collected around a main river located at the lower part of the Goro mine, and analyzed by ICP-MS for Cd, Cu, Pb, Zn and Cr after 0. 1N HCI extraction and by AAS for As after IN HCI extraction. Concentrations of cadmium and lead at the surface river deposits close to the mine were over the Soil Pollution Warning Limit (SPWL), and 43% of sample sites (6 of 14 samples) were over SPWL for As suggesting that river deposits were broadly contaminated by arsenic. Results from farmland soil analysis showed that surface soils were contaminated by heavy metals, while only arsenic was over SPWL at 50% of sampling sites. Main pollution mechanism around the Goro mine was the discharge of mine tailing and waste rocks from the storage site to the river and to adjacent farmland during flood season. Pollution Grades for sample locations were prescribed by the Law of Soil Environmental Preservation, suggesting that the pollution level of heavy metals around the Goro mine was serious, and the remediation operation fur arsenic and the isolation of mine tailing and waste rocks from river and farmland should be activated to protect further contamination. The area needed to clean up was estimated from pollution distribution data and the remediation methods such as a soil washing method and a soil improvement method were considered as the further remediation operation for arsenic contaminated soils and river deposits around the Goro abandoned mine.

Treatment of Animal Wastewater Using Woodchip Trickling Filter System and Physical and Microbial Characteristics of Wood Chip Media (목편살수여상조를 이용한 축산뇨오수 처리와 목편여재의 물성 및 부착미생물 특성)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.71-80
    • /
    • 2011
  • Trickling filter has been extensively studied for the domestic wastewater treatment especially for the small scale plants in rural area. The purpose of this research is to survey the physical and microbial characteristics of wood chip media and the removal efficiency of animal wastewater using wood chip trickling filter system. The trickling filtration system comprises a filtration bed packed with wood chip media having a particle dia. of 5~7cm. The method comprises natural air from the bottom of the bed. The system also comprises a control mechanism including a time a constant discharge pump for controlling supply of the wastewater into the bed. The following conclusions were obtained from the results of this research. 1. The specific surface area of wood chip was 0.4123 $m^2$/g, pore volume was 0.0947 $cm^3$/g, density was 0.49 g/$cm^3$. It has forms of parallelogram and oblong which have numerous small pore space. This wood chip has been good condition for microorganism's habitat, having very larger specific surface area by complex the three dimension structure of cellulose at wood's major ingredients. 2. The total counts of in attached aerobic microbes were ranged from $10^6$ to $10^8$ CFU/g, and anaerobes microbial numbers were from $10^4$ to $10^7$. The aerobic microbial numbers appeared to be much more than those of anaerobic microbial numbers. 3. The average efficiency of $BOD_5$ and CODcr were 74.5% and 51.5%, respectively. The removal efficiency of T-N and T-P were 61.4%, 56.2%, respectively. But SS removal levels remain 19.3%.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.