• Title/Summary/Keyword: Discharge Load

Search Result 523, Processing Time 0.035 seconds

Application of FDC and LDC using HSPF Model to Support Total Water Load Management System (오염총량관리제 지원을 위한 유역모형 기반 유량지속곡선 및 부하지속곡선 활용방안)

  • Lee, Eun Jeong;Kim, Tae Geun;Keum, Ho Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.33-45
    • /
    • 2018
  • In this study, we discussed the application of Watershed model and Load Duration Curves (LDC) in Total Water Load Management System. The Flow Duration Curves (FDC) and the LDC were generated using the results of the daily HSPF model and analyzed on monthly or yearly flow duration variability, and non-point pollutant discharge loads by entire flow conditions. As a result of the calibration and verification of the HSPF model, both the flow and the water quality were appropriately simulated. The simulated values were used to generate the Flow Duration Curve and the Load Duration Curve, and then the excess rate by entire flow conditions was analyzed. The point and non-point pollutant discharge loads for entire flow conditions were calculated. It is possible to evaluate the variability of water quality in specific flow duration through the curves reflecting the flow duration variability and to confirm the characteristics of the pollutant source. For a more scientific Total Water Load Management System, it is necessary to switch from a current system to a system that can take into account the entire flow conditions. For this, the application of the watershed model and load duration curve is considered to be the best alternative.

Selection of Priority Management Target Tributary for Effective Watershed Management in Nam-River Mid-watershed (남강 중권역의 효율적인 유역관리를 위한 중점관리 대상지류 선정)

  • Jung, Kang-Young;Kim, Gyeong-Hoon;Lee, Jae-Woon;Lee, In Jung;Yoon, Jong-Su;Lee, Kyung-Lak;Im, Tae-Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.514-522
    • /
    • 2013
  • The major 24 tributaries in Nam-River mid-watershed were monitored for discharge and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. According to the analytical results of discharge and water quality monitoring data of 24 tributaries, the mean value of discharge below $0.1m^3/s$ was 62.5% among the monitored tributaries and it mostly exceeded the water quality standards of Nam-river mid-watershed ($BOD_5$ = 3 mg/L, T-P = 0.1 mg/L over). According to the stream grouping method and the water quality delivery load density ($kg/day/km^2$) based on the results of tributary discharge and water quality monitoring, the tributary watersheds for improving the water quality were selected. In the Nam-River mid-watershed, tributaries in the GaJwaCheon, HaChonCheon catchment (Group D, $BOD_5$ = 3 mg/L over) and in the UirYeongCheon, SeokGyoCheon catchment (Group A, T-P = 0.1 mg/L over), which have a small flow (and/or large flow) and a high concentrations of water pollutants. The various water quality improving scheme for tributaries, in accordance with the reduction of potential point source pollution by living sewage and livestock wastewater, should be established and implemented.

Characteristics of Non-point Pollution Discharge on Stormwater Runoff from Lake Doam Watershed (도암호 유역의 강우시 비점오염물질 유출 특성)

  • Kwak, Sung-Jin;Bhattrai, Bal Dev;Kim, Eun-Jung;Lee, Chang-Keun;Lee, Hyeong-Jin;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.62-71
    • /
    • 2012
  • Lake Doam watershed was surveyed to evaluate non-point source discharge characteristics and discharge load including several water quality parameters in Song Stream from July 2009 to July 2011. Concentrations of water pollutants were high during the rainfall period, especially, SS, TP and COD showed increasing tendencies toward cumulative water discharge but TN did not show much difference. SS, TP and COD had an initial flush effect of over 50 mm rainfall event but there was no clear tendency for rainfalls below that level. Event mean concentration (EMC) regarding the rainy and dry period showed large differences. Especially rainy season EMC (SS, TP, COD) demonstrated an increasingly high tendency. EMCs of COD, SS, TN and TP measured for twelve rain events were as high as 26.1, 866.0, 4.68 and 0.605 mg $L^{-1}$, respectively. COD, SS, TN and TP loadings from the highland agricultural region of the Song Stream watershed were 34,263, 1,250,254, 2,673 and 933 kg $yr^{-1}\;km^{-2}$, respectively, which were relatively higher than the results of other stream systems. Therefore, it is strongly recommended that long-term monitoring and non-point pollution reduction programs for the highland agricultural area to continue. Furthermore, this non-point source pollution loading research acquired from the highland agricultural area could be the base for reassessment.

Design and Analysis of a Battery Charge and Discharge Regulator of Communication Satellite (통신위성 배터리 충,방전기 설계 및 해석)

  • Choe,Jae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.118-126
    • /
    • 2003
  • In this study, a battery charge and discharge regulator of modular type is designed as paralleled bi-directional converter that is possible to provide the power without failure not only in the steady state but also in the transient period by the step load variation or the unexpected faults among the converter modules. Each converter module is designed to get stability, performance, reliability, and maintainability and the average current mode method used for controller has the advantages such as noise immunity, fast response, and the real average current signal acquisition. The equivalent model and small signal model for the paralleled battery chargerIdischarger are presented, and also the transfer functions are analyzed for the CCM(Continuous Charge Mode), CDM(Continuous Discharge Mode) and DDM(Discontinuous Discharge Mode). The experiments of the paralleled bi-directional converter are carried out in the step load variation, and in faults of one converter module respectively. And the performance of paralleled bi-directional converter is verified via the experimental results.

Battery Charge and Discharge Optimization for Vehicle-to-grid Regulation Service (전력 보조서비스 제공을 위한 전기자동차 충/방전 최적화)

  • Kim, Wook-Won;Shin, Hong-Yul;Kim, Jin-O;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1033-1038
    • /
    • 2014
  • Electric vehicles should be connected to power system for charge and discharge of battery. Besides vehicle's battery is charged for a power source, it is also reversibly possible to provide power source from battery to power system. Researches on battery usage for regulation resources have been progressed and could cause cost increase excessively because they distribute regulation capacity equally without considering the battery wear cost of SOC, temperature, voltage and so on. This causes increase of grid maintenance cost and aggravate economical efficiency. In this paper it is studied that the cost could be minimized according to the battery condition and characteristic. The equation is developed in this paper to calculate the possible number of charge and discharge cycle, according to SOC level and weighting factors representing the relation between battery life and temperature as well as voltage. Thereafter, the correlation is inferred between the battery condition and wear cost reflecting the battery price, and the expense of compensation is decided according to the condition on battery wear-out of vehicle. In addition, using realtime error between load and load expectation, it is calculated how much regulation capacity should be provided.

Pollutant Delivery Ratio of Okdong-cheon Watershed Using HSPF Model (HSPF 모형을 이용한 옥동천 유역의 유달율 분석)

  • Lee, Hyunji;Kim, Kyeung;Song, Jung-Hun;Lee, Do Gil;Rhee, Han-pil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.9-20
    • /
    • 2019
  • The primary objective of this study was to analyze the delivery ratio using Hydrological Simulation Program - Fortran (HSPF) in Okdong-cheon watershed. Model parameters related to hydrology and water quality were calibrated and validated by comparing model predictions with the 8-day interval filed data collected for ten years from the Korea Ministry of Environment. The results indicated that hydrology and water quality parameters appeared to be reasonably comparable to the field data. The pollutant delivery loads of the watershed in 2015 were simulated using the HSPF model. The delivery ratios of each subwatershed were also estimated by the simple ratio calculation of pollutant discharge load and pollutant delivery load. Coefficients of the regression equation between the delivery ratio and specific discharge were also computed using the delivery ratio. Based on the results, multiple regression analysis was performed using the discharge and the physical characteristics of the subwatershed such as the area. The equation of delivery ratio derived in this study is only for the Okdong-cheon watershed, so the larger studies are needed to apply the findings to other watersheds.

Machining Characteristics of SKS3 in Wire Cut Electrical Discharge Machining (합금공구강 SKS3의 와이어컷 방전가공 특성)

  • Ko, Beong-Du;Sin, Myong-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.101-106
    • /
    • 2008
  • In the wire cut electrical discharge machining, the optimal machining parameters setting satisfying the requirements of both high efficiency and good quality is very difficult because its process involves a series of complex physical phenomena and the machining parameters are numerous over diverse range. In this paper, the experimental investigation has been performed to find out the influence of the machining parameters on the machining performance such as cutting speed and surface roughness. The selected experimental parameters are no load voltage, discharge peak current and pulse-off time. The experimental results give the guideline for selecting suitable machining parameters.

A Study on Discharge Capacity of Vertical Drain Considering with In-situ Soil Condition (원지반조건을 고려한 연직배수재의 통수능에 관한 연구)

  • Park, Min-Chul;Kim, Eun-Chul;Lee, Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Discharge capacity of PBD is sensitive in proportion to thickness and ground condition, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity gets larger according to ground condition, construction condition and soil properties. But cause and analysis of those problems like reduced discharge of capacity and delayed dissipation of pore water pressure for discharge capacity is lack. Thus, in this text, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with in-situ ground condition. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. After in-situ ground and reclamation of ground are dredged, load following the loading step of 30, 70 and 120kPa using a pressure device. Result of the test, The discharge capacity was SM>ML>CL>CL(dredged soil) in situ condition and more fine-grained content, the amount of discharge was greater.

Numerical analysis of deposition and channel change in the vegetation zone (식생대에서 유사의 퇴적과 하도변화 수치모의 분석)

  • Hwang, Hyo;Jang, Chang-Lae;Kang, Minseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • This study analyzed the bed load transport and channel change on the vegetation zone through laboratory experiments and numerical simulations. To examine the effect of vegetation zone in the laboratory experiment, artificial vegetation zones made of acrylic sticks were installed in the experimental channel, and discharge conditions were adjusted to examine the bed load transport and channel change in the vegetation zone. Next, numerical simulations were performed by applying the same conditions as those of the laboratory experiment to the Nays2D model, a two-dimensional numerical model, and the applicability of the numerical model was examined by comparing the results with the results of the laboratory experiment. Finally, by applying a numerical model, the bed load transport and channel change according to the change in vegetation density were examined. As a result of examining the bed load transport and channel change in the vegetation zone according to the discharge condition change by applying the laboratory experiment and the numerical model, the results of the two application methods were similar. As the discharge increased, bed load from the upper stream was deposited inside the vegetation zone. On the other hand, on the other side of the vegetation zone, the flow was concentrated and erosion occurred. Also, the range of erosion increased in the downstream direction. As a result of examining the bed load transport and channel change according to the change in vegetation density, as the vegetation density increased, the bed load from the upper stream was deposited inside the vegetation zone. On the other hand, due to the increase in vegetation density, the flow was concentrated to the opposite side of the vegetation zone, erosion occurred.

The Allocation Methods for Economical Efficiency Using an Optimized Model (최적화 모델을 이용한 경제적인 총량관리 할당기법 연구)

  • Choi, In Uk;Shin, Dong Seok;Kim, Hong Tae;Park, Jae Hong;Ahn, Ki Hong;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.295-303
    • /
    • 2015
  • In Korea, Total Maximum Daily Loads(TMDLs) has been enforced to restore and manage water quality in the watersheds. However, some assesment of implementation plan of TMDLs showed that the achievement of the target water quality is not related to the proper allocation loads because difference of flow duration interval. In the United States, the discharge loads are determined by water quality modeling considering standard flow conditions according to purpose. Therefore, this study tried to develop the allocation method considering economical efficiency using water quality model. For this purpose, several allocation methods being used in the management of TMDLs is investigated and develope an allocation criteria considering regional equality and uniformity. Since WARMF(Watershed Analysis Risk Management Framework) model can simulate the time varying behavior of a system and the various water quality variables, it was selected for a decision support system in this study. This model showed fairly good performance by adequately simulating observed discharge and water quality in Miho watershed. Furthermore, the scenario simulation results showed that the effect of annual average water quality improvement to remove 1kg BOD is more than 25 times, even if point pollutants treatment facility is six times more expensive to operate than non-point pollutants treatment facility.