• Title/Summary/Keyword: Discharge Current Oscillation

Search Result 20, Processing Time 0.021 seconds

Glow Discharge as Detector for Gas Chromatography (글로우방전을 이용한 가스크로마토그라프 검출기의 개발)

  • 김효진;박일영;장성기;김박광;박만기
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.76-83
    • /
    • 1993
  • The changes in discharge current, emission and/or oscillation frequency of the electric oscillation of a glow discharge are the potential sensitive measure of the concentration of an impurity in the argon plasma supporting gas. A single jet enhanced glow discharge has been interfaced with the gas chromatograph via 1/8" O.D. tube with a heating pad to study the changes in discharge current. To investigate the optimum operating conditions of the glow discharge system as detector for gas chromatography, pressure, gas flow rate, discharge current, distance between the anode and the cathode have been studied.

  • PDF

Study on the Plasma Oscillation for Gas Chromatographic detector (플라즈마진동을 이용한 기체크로마토그래프의 검출기에 대한 연구)

  • Kim, Hyo Jin;Mang, Dae Young;Kang, Jong Seong
    • Analytical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.369-374
    • /
    • 1993
  • Plasma oscillation has been observed during the development of the glow discharge as detector for gas chromatography. The variation of oscillation frequency shows the better stability and detection limits than the changes in the dischange curent. To investigate the range of useful operating conditions and to gain insight into the mechanism, the effect of experimental parameters on plasma oscillation have been studied. This study includes the variation of discharge current, pressure and discharge gap. Frequency ranges of 10KHz to 10MHz have been observed with the various shapes of oscillation. Two kinds of mode for oscillation are observed with the variation of electrode gap at low pressure and low voltage.

  • PDF

Thrust Vector Control and Discharge Stabilization in a Hall Thruster by Azimuthal Division of Propellant Flow Rate

  • Fukushima, Yasuhiro;Yokota, Shigeru;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.574-578
    • /
    • 2008
  • In order to achieve thrust vector control and discharge stabilization in Hall thrusters, the azimuthal nonuniformity of propellant flow rate in an acceleration channel was created. A plenum chamber was divided into two rooms by two walls and propellant flow rate supplied to each section was independently controlled. In a magnetic layer type Hall thruster, steering angle of up to ${\pm}2.3$ degree was achieved. In an anode layer type Hall thruster, discharge current oscillation amplitude was decreased with the normalized differential mass flow rate.

  • PDF

Electrochemical spike oscillation st the Ni electrode interface (Ni 전극 계면에서 전기화학적 spike 발진)

  • 천장호;손광철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.83-89
    • /
    • 1996
  • The electrochemical spike oscillations at the nickel (Ni) electrode/(0.05M KHC$_{8}$H$_{4}$O$_{4}$) buffer solution (pH 9) interface have been studied using voltammetric and chronoamperometric methods. The nature of the periodic cathodic current spikes is the activation controlled currents due to the hydrogen evolution reaction and depends onthe fractioanl surface coverage of the adsorbed hydrogen intermediate or the cathodic potential. There is two kinds of the waveforms corresponding to two kinds of the cathodic current spike oscillations. The widths, periods, and amplitudes of the cathodic current spikes are 4 ms or 5ms, 151 ms or 302 ms, and < 30 mA or < 275 mA, respectively. The fast discharge and recombination reaction steps are 1.5 times and twice and faster than the slow discharge and recombination reaction steps. The fast and slow discharge and recombination reaction steps are 1.5 times and twice faster than the slow discharge and recombination reaction steps. The fast and slow discharge and recombination reactions corresponding to the fast and slow adsorption sites at the Ni cathode.

  • PDF

Selecting an Anode Orifice Configuration for Hall Thrusters

  • Takeshi Miyasaka;Takeo Soga;Nakayama, Ei-ichi;Hirotaka Uehara;Takeshi Furukawa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.282-286
    • /
    • 2004
  • Discharge current oscillation in a 20KHz range is a serious problem for Hall thruster performance, In our previous work, a possibility of controlling the oscillation amplitude by increasing the speed of neutral particles incoming to the ionization zone was predicted in our previous work. In this paper, the effects of diameter of anode orifice on the oscillation phenomena and the thrust performance were evaluated experimentally. The experimental results show that the measured amplitude of oscillation becomes smaller as the diameter of anode orifice. However, the larger orifice makes thrust performance lower. The results of numerical analysis of neutral particles show that these tendencies have much to do with neutral properties.

  • PDF

A Study on the Operational Characteristics of $CO_2$ Laser Excited by 60Hz AC Discharges (상용주파수 교류방전 $CO_2$ 레이저의 동작 특성)

  • Lee, Dong-Hoon;Im, Kyu-Ho;Jeong, Hyun-Ju;Kim, Hee-Je;Jo, Jung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.587-590
    • /
    • 1999
  • In this study, it is the purpose to develope a cheap and compact $CO_2$ laser and to apply 60 Hz AC discharges as a new exciting source. An axial and water cooledtype was adopted as the laser mode. The laser performance characteristics as various parameters, such as gas pressure and discharge current, have been investigated. And the laser output and the efficiency of DC and 60 Hz AC discharge-exciting type have been measured and compared for the different input powers at the static operational pressure. As a result, the case of 60 Hz AC discharge-exciting type, the laser oscillation began at the condition of operational pressure 6 Torr and discharge current 5 mA. A maximum laser output of about 32 W was obtained at an operational pressure of 18 Toorr and a discharge current of 30 mA. In addition, the laser output was saturated from an operational pressure of about 14 Torr and a discharge current of about 20 mA. In this $CO_2$ laser, the laser output of 60 Hz AC discharge-exciting type was slightly higher than that of DC discharge-exciting type. And the laser efficiency was about 10 to 13% for the various operational pressures and the discharge currents.

  • PDF

The Study on the Properties of He Glow discharge in a Dielectric Barrier Discharge (DBD) Model (DBD 전극구조에서의 He 가스 글로우방전 특성연구)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.214-220
    • /
    • 2018
  • Light sources induced by gas discharge using rare gases have been widely used in the thin film deposition, the surface modification and the polymer etching. A dielectric barrier discharge (DBD) has been developed in order to consistently emit light and control the wavelength of the emission light. However, much research on the characteristics of the movement of discharge particles is required to improve the efficiency of the light lamp and the life-time of the light apparatus in detail. In this paper, we developed a He DBD discharge simulation tool and investigated the characteristics of discharge particles which were electrons, two positive ions ($He^+$, $He_2^+$) and 5 excited particles ($He^*(1S)$, $He^*(3S)$, $He^*$, $He^{**}$, $He^{***}$). The discharge currents showed the transition from pulse mode to continuous mode with the increase of power. With the accumulated charges on the barrier walls, the discharge current was rapidly increased and caused oscillation of the discharge voltage. As the gas pressure increased, $He_2^+$ and $He^*(3S)$ became the dominant activated particles. The input power was mostly consumed by electrons and $He_2^+$ ion. And the change curve showed that power consumption by electrons increased more with gas pressure than with source voltage or frequency.

Detection of Ultrasonic Wave Signals Associated with Partial Discharge in XLPE (가교폴리에틸렌(XLPE)의 부분방전에 의한 초음파 검출)

  • 김성규;이상우;구경철;김충년;김인식;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.136-140
    • /
    • 1999
  • Measurements of AE signals caused by partial discharges were performed by using an ultrasonic measurement technique to diagonise the electrical treeing deterioration in XLPE cable. We also examined the partial discharge magnitude and AE signals(peak-to-peak) with the increase of the deterioration time. From these results, it was found that AE signal due to partial discharge can be greatly detected at the peak value of positive polarities prior to the breakdown voltages, and the magnitude of AE signals was closely related to the current pulses by the increase of deterioration, and it appeared that AE signals(peak-to-peak) was proportional to partial discharge magnitude. Attenuation and time-delaying characteristics of ultrasonic signals propagated in various polymers sample by using ultrasonic oscillation and receiving systems are also reported as a basic data of ultrasonic measurements in XLPE cable.

  • PDF

A Study on the Ballast Design of a Inductively Coupled Plasma Light Source based on Oscillation Theory (발진 이론에 근거한 유도결합형 방전광원의 안정기 설계에 관한 연구)

  • Kim, Cherl-Jin;Yim, Youn-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1110-1115
    • /
    • 2009
  • We studied on the design of electrical parameters for ICP(Inductively Coupled Plasma) light sources which can be effective to improve the electrical power efficiency of it. These parameters were derivated from Barkhausen theory about the oscillating condition of a ballaster. The relationships of $f-I_p$ and f-n were calculated theoretically and then these relationships were compared with the measured results about $I_p$ and power depending to a discharge length(l) of ICP light source. Finally, we can see that a specific range of induced current depending to a discharge length would be necessary to minimize the change of magnetization inductance and driving frequency at driving.

Effect of Sheath Structure on Operating Stability in an Anode Layer Thruster

  • Yasui, Shinsuke;Yamamoto, Naoji;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.245-250
    • /
    • 2004
  • The discharge current oscillation has been measured for various hollow anode widths and its axial positions using a 1㎾-class anode layer hall thruster. As a result, there were thresholds of magnetic flux density for stable discharge. The plasma structure inside the hollow anode was numerically analyzed using the fully kinetic 2D3V Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods. The results reproduced both stable and unstable operation modes. In the stable operation case, which corresponds to the case with low magnetic flux, the plasma penetrated into the hollow anode deeper than the case with higher magnetic flux density case. This suggests that comparably large substantial anode area should contribute to stable operation.

  • PDF