• Title/Summary/Keyword: Disc force

Search Result 183, Processing Time 0.024 seconds

Stability Analysis of Rotating Discs Due to Head interference (헤드간섭으로 인한 회전 디스크의 안정성 분석)

  • 임경화
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.865-872
    • /
    • 2000
  • This paper presents the modeling, theoretical formulation, and stability analysis for a combined system of a spinning disc and a head that contacts the disc. In the analytic model, head interference is considered by a rotating mass-spring-damper system together with a frictional follower force on the damped annular discs. The multiple scale method is utilized to perform the stability system that shows the existence of instability associated with parametric resonances. Using the formulated system , instability regions of optical recording disc are investigated with variation of mass, stiffness and friction force of a head, respectively. The simulation results show that the stiffness of a head is the most sensitive parameter on the instability of the disc.

  • PDF

Research Trend of Real-Time Measurement for Acting Force of TBM Disc Cutter (TBM 디스크커터의 실시간 하중 계측을 위한 연구현황)

  • Gyeongmin Ki;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.244-254
    • /
    • 2023
  • The disc cutter mounted on the Tunnel Boring Machine (TBM) is subjected to cutting forces in three dimensions during rock excavation process. It is widely known that the cutting forces increased with the strength of the rock mass, while the rolling force can be significantly increased when the disc cutter encounters abnormal rotation. Therefore, the cutting force acts on the disc cutter provides important information because it represents the conditions of the rock mass and the disc cutter. For these reasons, several studies have been conducted to measure the cutter forces in real-time. This paper introduces the current status of research on the cutter force measurement of TBM disc cutters, which has been reported in the literature. It is judged that this paper can be a useful reference material when similar technologies are developed in Korea in the future.

Deformation Analysis and Experimental Verification of DVD Optical Disc Holders (DVD 광 디스크 홀더의 변형 해석 및 실험적 검증)

  • 김진곤;박용국
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.164-170
    • /
    • 2003
  • To ensure the reliability of DVDR-P and DVD-ROM, it is imperative to remedy the unrecoverable creep deformation and/or relaxation of the holding force of an optical disc holder. To predict the deformation of an optical disc holder, a deformation analysis of an 80 mm optical disc holder considering the creep characteristics of 3 plastic materials has been conducted. Subsequently, the results by this Finite Element Analysis (FEA) are experimentally verified. A disc holder inserted in a cartridge case is kept in a chamber of $60^{\circ}C$ with 90 % humidity for 24 hours. The arm span and the holding force of the disc holder are measured after being left for another 24 successive hours at a room temperature and under normal humidity. The predicted results by FEA are in good agreement with experimentally measured values.

Analysis of Out-of-plane Motion of a Disc Brake System Considering Contact Stiffness (접촉 강성을 고려한 디스크브레이크의 면외진동 해석)

  • Joe, Yong-Goo;Oh, Jae-Eung;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.597-600
    • /
    • 2004
  • A two-degree-of-freedom out-of-plane model with contact stiffness is presented to describe dynamical interaction between the pad and disc of a disc brake system. It is assumed that the out-of-plane motion of the system depends on the friction force acting along the in-plane direction. Dynamic friction coefficient is modelled as a function of both in-plane relative velocity and out-of-plane normal force. When the friction coefficient depends only on the relative velocity, the contact stiffness has the role of negative stiffness. The results of stability analysis show that the stiffness of both pad and disc are equally important. Complex eigenvalue analysis is conducted for the case that the friction coefficient is also dependent on the normal force. The results further verify the importance of the stiffness. It has also been found that increasing the gradient of friction coefficient with respect to the normal force makes the system more unstable. Nonlinear analysis is also performed to demonstrate various responses. Comparing the responses with experimental data has shown that the proposed model may qualitatively well represent a certain type of brake noise.

  • PDF

Dynamic Instability of a Disc Brake Pad under Distributed Friction Force (분포마찰력을 받는 디스크 브레이크 패드의 동적 불안정)

  • Oh, Boo-Jin;Ryu, Bong-Jo;Yim, Kyung-Bin;Sugiyama, Yoshihiko;Ryu, Si-Ung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.665-670
    • /
    • 2000
  • The paper presents the dynamic instability of a disc brake pad subjected to distributed friction forces. A brake pad can be modeled as a beam with two translational springs. The study of this prototypical model is intended to provide a fundamental understanding of disc brake pad instabilities. Governing equations of motion are derived form energy expressions and their corresponding solutions are obtained by employing the finite element method. The critical distributed friction force and the instability regions are demonstrated by changing two translational spring constants. Finally, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two spring constants.

  • PDF

Optimization of Disc Braking Force pattern from the viewpoint of Braking Energy (제동에너지 관점에서의 최적 디스크 제동력 패턴 설정)

  • Kim, Young-Guk;Park, Chan-Kyoung;Kim, Ki-Hwan;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.294-299
    • /
    • 2006
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. When the disc brake is applied in the high speed region, the wear of pad is increased rapidly. In this paper, we discuss the optimized patterns of the disc brake force from the view point of braking energy.

  • PDF

Comparative analysis of cutter acting forces and axial stresses of single and double disc cutters by linear cutting tests (선형절삭시험에 의한 더블디스크커터와 싱글디스크커터의 커터 작용력과 축응력에 대한 실험적 평가)

  • Choi, Soon-Wook;Chang, Soo-Ho;Park, Young-Taek;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.181-191
    • /
    • 2014
  • This study aims to evaluate cutter acting forces as well as axial stresses and torques in the shaft of two kinds of disc cutters including a single disc cutter and a double disc cutter with the same cutter ring geometry in a series of linear cutting tests. From the tests, the mean values of normal forces and rolling forces acting on the double disc cutter were approximately twice as high as those from the single disc cutter. Similarly, the mean values of axial stresses in the shaft of the double disc cutter were also twice as high as those from the single disc cutter even though the comparisons of torques from two kinds of disc cutters were insignificant since they showed very low values. However, it is necessary to take the durability of a tapered roller bearing used for the double disc cutter into high consideration since the average normal force from the double disc cutter exceeds the allowable force for a disc cutter with the diameter of 432 mm (17 inches). Finally, there is no practical problem in terms of axial stresses in the shaft of the double disc cutter since they are much lower than the yielding stress of the cutter shaft material, even though the axial stresses in the shaft of the double disc cutter are approximately twice as high as those from the single disc cutter.

Discussion of the relationship between adhesion force and braking force in slip condition (제동시 점착력과 제동력의 관계에 대한 고찰)

  • Kim, Young-Guk;Kim, Seog-Won;Mok, Jin-Yong;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1005-1011
    • /
    • 2007
  • The brake system of train must posses the large braking effort in order to stop the train safely within the limited traveling distance. But, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid, because the applied braking force exceeds the allowable adhesive force. This skid causes not only to increase the stopping distance but also to deteriorate the safety of train and damage the rail surface by wheel flat. In the present paper, the braking force for disc brake of Korea High Speed Train (HSR350x) was measured through on-line test and the adhesion force was estimated by using the analytic model in the skid condition. Also, we have discussed the relationship between the actual disc brake force and the adhesion force in real skid condition.

  • PDF

Effects on the Adjacent Motion Segments according to the Artificial Disc Insertion (인공 추간판 적용으로 인한 인접 운동 분절의 영향)

  • Kim, Young-Eun;Yun, Sang-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.122-129
    • /
    • 2007
  • To evaluate the effect of artificial disc implantation and fusion on the biomechanics of adjacent motion segment, a nonlinear three-dimensional finite element model of whole lumbar spine (L1-S1) was developed. Biomechanical analysis was performed for two different types of artificial disc, ProDisc and SB $Charit{\acute{e}}$ III model, inserted at L4-L5 level and these results were also compared with fusion case. Angular motion of vertebral body, forces on the spinal ligaments and facet joint under sagittal plane loading with a compressive preload of 150 N at a nonlinear three-dimensional finite element model of Ll-S1 were compared. The implant did not significantly alter the kinematics of the motion segment adjacent to the instrumented level. However, $Charit{\acute{e}}$ III model tend to decrease its motion on the adjacent levels, especially in extension motion. Contrast to motion and ligament force changes, facet contact forces were increased in the adjacent levels as well as implanted level for constrained instantaneous center of rotation model, i.e. ProDisc model.

Optimization of Pin-hole Location to Minimize Stress Concenstration around Hole in Rotating Disc under Centrifugal Force (원심력을 받는 회전원판내 원공주위 응력집중 최소화를 위한 핀홀위치 최적화)

  • Han, Geun-Jo;Kim, Tae-Hyong;Ahn, Sung-Chan;Shim, Jae-Joon;Han, Dong-Seop
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.574-578
    • /
    • 2003
  • The objective of this paper is to decide optimal location of pin-hole to minimize stress concenstation around hole in rotating disc. The focus of this investigation is to evaluate the effect of pin-hole for stress distribution around hole using optimum design technic and finite element analysis. Design variables are radial and angular location of pin-hole from center of hole, objective function is maximum stress around hole in rotating disc. We use first order method of optimization technic.

  • PDF