• 제목/요약/키워드: Disc brake

검색결과 206건 처리시간 0.031초

회전 디스크 브레이크의 스퀼소음에 대한 선형안정성 연구 (Linear Stability Analysis of a Rotating Disc Brake for Squeal Noise)

  • 강재영
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1092-1098
    • /
    • 2009
  • The squeal propensity of an automotive disc brake system is studied in the theoretical and computational manner. The rotating disc is in contact with two stationary pads and the nonlinear friction is engaged on the contact surface. The friction-coupled equations of motion are derived in the finite element(FE) of the actual brake disc and pad. From the general definition of friction force, the rotation and in-plane mode effects can be included properly in the brake squeal model. The eigenvalue sensitivity analysis and the mode shape visualization at squeal frequencies are also conducted for the detailed investigation. It is found that the squeal propensity is strongly influenced by rotation effect and the in-plane mode can be involved in squeal generation.

세라믹 코팅 고에너지 제동 디스크의 마찰특성 연구 (Experimental Analysis of Ceramic Coated High Power Brake Discs)

  • 강부병;이희성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.97-107
    • /
    • 1998
  • Three different kinds of brake discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. Braking test bench was specially designed to analyse thermo-mechanical and frictional behaviors of two sizes of brake discs in stop and hold braking modes. And Plasma spray coating technique was used to coat ceramic powder on the discs. In the test four commercial brake pads were coupled with discs. Ceramic coated discs had shown good stability in friction coefficient at high speed and high energy braking conditions. But they caused large pad mass wear loss compared with the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. For a steel disc, it had shown fluctuating friction coefficient at high speed but a fittie pad mass wear loss compared with ceramic coated discs.

  • PDF

반 실린더형 홈을 가진 벤틸레이티드 디스크 브레이크에서의 국소열전달 측정 및 수치 해석 (Local Heat Transfer Measurement and Numerical Analysis in the Ventilated Disc Brake with Semi-Cylindrical Grooves)

  • 이대희;박성봉;임창율;김흥섭;이관수
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.587-593
    • /
    • 2006
  • A ventilated disc brake having semi-cylindrical grooves has been proposed to improve the thermal judder by way of heat transfer enhancement. The local heat transfer coefficients were measured in the flow passage of disc brake. These measured local heat transfer data were utilized to do the finite element numerical analysis which predicts the maximum temperatures on the disc brake. The results show that the maximum temperatures on the disc surface with semi-cylindrical grooves are approximately 35.2% lower than those without them.

제안된 알루미늄 복합체 제동 디스크 형상의 열응력 해석 (A Thermal Stress Analysis for Suggested Shape of Al Hybrid Brake Disc)

  • 임충환;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.283-288
    • /
    • 2011
  • The high heat resistant material for brake disc is required for higher speed trains. Although Aluminum is very expensive, it which has high thermal conductivity and low density has been adapted to high performance light-weight brake disc. In this study, we carry out the thermal stress analysis for suggested shape of Al hybrid brake disc which was designed to meet the optimal point between a performance and economic side. And we compare the results from the analysis to results of conventional disc at the same braking speed. The result show that the temperature on braking surface of Al hybrid disc is lower than the temperature on conventional disc surface, whereas the maximum thermal stress is larger than stress on conventional disc.

  • PDF

Distribution of Deposited Carbon in Carbon Brake Disc Made by Pressure-Gradient Chemical Vapor Infiltration

  • Chen, Jianxun;Xiong, Xiang
    • Carbon letters
    • /
    • 제8권1호
    • /
    • pp.25-29
    • /
    • 2007
  • The carbon brake discs were manufactured by densification the carbon fiber preform using PG-CVI technology with Propene as a carbon precursor gas and Nitrogen as a carrier gas. The densities of carbon brake discs were tested at different densification time. The results indicate that the densification rate is more rapid before 100 hrs than after 200 hrs. The CTscanning image and the SEM technology were used to observe the inner subtle structure. CT-images show the density distribution in the carbon brake disc clearly. The carbon brake disk made by PG-CVI is not very uniform. There is a density gradient in the bulk. The high-density part in the carbon brake is really located in the friction surface, especially in the part of inner circle. This density distribution is most suitable for the stator disc.

용사처리에 의한 자동차 브레이크용 마찰재료의 마찰성능개선에 관한 연구 (A study on the improvement of frictional performance of friction material for automobile brake by spray treatment)

  • 김윤해;배창원;손태관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.67-76
    • /
    • 1998
  • Friction materials for brake linings and clutches have severe performance requirements. The principal function of such frictional elements is to convert kinetic energy to heat, and then either to absorb or to dissipate heat. In order to achieve these objectives, the coefficient of friction must be as high as possible, independent of variations in operating conditions, and the necessary energy conversion must be accomplished with a minimum of wear on the contacting parts. In this study, Al powder, Al bronze powder and Mo powder used in general for automobile brake was sprayed on automobile brake disc to restrain rust and to maintain friction performance. Dynamo and corrosion tests have been carried out. It is concluded that the sprayed disc with Al bronze powder has the most improved frictional performance and anti-corrosive characteristics. The main results obtained can be summarized as follows; 1. From the corrosion current density test for gray cast iron and sprayed disc with powders of Al, Al bronze and Mo, it was cleared that the spray treatment with Al bronze powder showed the most superior anti-corrosive characteristics than other powders. 2. By anode polarization toward the noble direction from corrosion potential, corrosion current density with sprayed brake disc by Al-bronze powder was the lowest. 3. Mean frictional coefficients obtained from dynamo test are as follows : the sprayed disc with Al(99.99%) powder was 0.190 ; the sprayed disc with Al-bronze powder was 0.312 ; the sprayed disc with Mo powder was 0.257 ; the non-sprayed disc of gray cast iron was 0.331. In the case of the sprayed disc Al-bronze powder showed the most excellent frictional characteristics . 4. Amount of burnish quantity obtained from burnish test by dynamometer is as follows : the sprayed disc with Al-powder was 1.079 mm : the sprayed disc with Al-bronze powder was 0.155 mm : the sprayed disc with Mo powder was 0.253 mm : the non-sprayed disc of gray cast iron was 0.241 mm. Al-bronze powder also showed the most excellent burnish characteristics.

  • PDF

150km/h급 비석면 스폰지형 철계 브레이크 라이닝 개발 연구 (A study on the development of a Fe-based organic Drake lining with sponge structure for rolling stock of 150km/h train)

  • 최경진;이동형;고광범;권영필
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.219-225
    • /
    • 2000
  • This study is to develop a Fe-based disc brake lining with sponge structure for rolling stock of 150km/h train and to concept design with 3 groove type for brake disc reducing hot hair-crack and certainly friction coefficient. The developing brake lining would be to presumption of saving 300 million won during one year

  • PDF

제동에너지 관점에서의 최적 디스크 제동력 패턴 설정 (Optimization of Disc Braking Force pattern from the viewpoint of Braking Energy)

  • 김영국;박찬경;김기환;김석원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.294-299
    • /
    • 2006
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. When the disc brake is applied in the high speed region, the wear of pad is increased rapidly. In this paper, we discuss the optimized patterns of the disc brake force from the view point of braking energy.

  • PDF

접촉해석에 의한 철도차량용 제동패드의 형상 최적화 (Topology Optimization of Railway Brake Pad by Contact Analysis)

  • 구병춘;나인균
    • Tribology and Lubricants
    • /
    • 제30권3호
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.

제동시간이 통풍형 디스크 브레이크 시스템의 건전성에 미치는 영향 (Influence of the Braking Time on the Soundness of Ventilated Disc Brake Systems)

  • 곽우경;홍창기;김윤제
    • 자동차안전학회지
    • /
    • 제8권1호
    • /
    • pp.7-12
    • /
    • 2016
  • In order to analyze the soundness of ventilated disc brake systems, numerical study was performed with various vane shapes. In particular, two different vane type, and the braking time from 3.0 s to 4.5s with the interval of 0.5s were considered. Transient temperature distributions on the ventilated disc brake assembly were calculated using ANSYS CFX ver. 16.1. To elucidate the soundness of ventilated disc brake systems, moreover, the heat transfer coefficients were evaluated. Results were graphically depicted with different geometrical vane configurations and braking time.