• Title/Summary/Keyword: Disc Drive

Search Result 88, Processing Time 0.035 seconds

A Numerical Study on the Flow Field in an Optical Disc Drive (광디스크 드라이브 내부 유동장 해석)

  • 최명렬;성평용;이경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.991-997
    • /
    • 2003
  • A flow field around a disc in an optical disc drive is invested using numerical methods. The high-speed rotating disc induces a strong flow field around the disc, which causes the pressure distribution on the surfaces of the disc. The pressure difference between the upper and the lower surfaces causes the deformation of the disc. In the first part of this study, flow fields around a rotating disc and a stationary wall are investigated using a similarity solution method, in order to identify the effect of the distance between the disc and the wall on the pressure distribution on the surfaces of the disc. In the second part, flow field in a slim-type optical disc drive is studied using a commercial code in order to consider the effect of the vortices generated by the local geometry of the drive.

  • PDF

Vibration Reduction of an Optical Disc Drive by Using Dynamic Vibration Absorber (동흡진기를 이용한 광디스크 드라이브의 진동저감)

  • 박준민;허진욱;이영원;서영선;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.706-711
    • /
    • 2001
  • A dynamic vibration absorber(DVA) is developed to reduce the excessive focusing vibration of an optical disc drive(ODD) originated from the resonance of an wobble disc. We design the material properties of the DVA by FEM model such as Young's modules, damping coefficient, shapes and dimensions, analyze its dynamic characteristics and provide its design guide line for suppressing the vibration of an optical disc drive. To examine the performance. of the DVA, the vibration of the wobble disc and the feeding system is measured by using a laser vibrometer and the noise level is checked by using microphone. The result shows that the proposed DVA reduces the vibration and. the noise in an optical disc drive.

  • PDF

Study on vibration characteristic of NFR Disc Drive (NFR Disc Drive 진동 특성에 관한 연구)

  • Jeong, Mi-Hyeon;Song, In-Sang;Seo, Jeong-Kyo;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.874-875
    • /
    • 2008
  • Gap servo NFR (Near Field Recording) system is one of technologies to reduce beam spot size by increasing NA (Numerical Aperture) of lens. To achieve high NA, SIL (Solid Immersion Lens) is used. In case of using a blue LD (405 nm) as the light source the gap distance should be controlled under 100 nm with much tighter margin. To develop NFR disc drive with very small gap distance between SIL bottom and the surface of media, we need to research for the vibration characteristics and design considerations. This paper deals with a study on vibration characteristic of NFR disc drive.

  • PDF

Fatigue failure of the optical disc (피로현상에 의한 광디스크의 파손)

  • Hwang, Hyo-Kune;Kim, Nam-Woong;Dan, Byung-Ju;Kim, Jong-Man;Kim, Wae-Yeul;Lee, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1056-1061
    • /
    • 2003
  • CD-R disc drive is one of the basic options of personal computer today. In this trend, various CD-R discs can be purchased in every market. Even very low quality discs are in market too. Today's CD-R disc drive is being operated over 10,000 RPM. So the possibility of the disc fracture is growing faster. Sometimes, during the test of a new disc drive by various methods to confirm the quality of it, fracture of the disc happens. And it happens in end user's personal computer scarcely. In this reason, new methods to confirm the quality and the failure mechanism of the optical disc are studied in this paper.

  • PDF

An Experimental Study of Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 실험적 연구)

  • Jung, Ji-Won;Cho, Hyung-Hee;Choi, Myung-Ryul;Seong, Pyoung-Yong;Lee, Kyoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1789-1794
    • /
    • 2004
  • The present study investigates flow characteristics in an optical disc drive. Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in the personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity components and velocity spectrum are obtained using the laser Doppler anemometry (LDA). The results show that the front holes reduce now-induced noise and the position of pickup body affects flow near the window. In addition, il is possible for cooling of heat sources in an optical disc drive through measuring the flow fields under the tray.

  • PDF

Monitoring Method of Projecting Disc in Optical Archive System (아카이브 정보저장기기에서의 디스크 돌출 모니터링 기술)

  • Jeong, Wooyoung;Lim, Sung-Yong;Yang, Hyunseok;Yoo, SeungHon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • Optical Archive system consists of cartridge, drive and transfer robot. Transfer robot moves disc in cartridge to drive that reads data of disc. Distance between disc in cartridge and transfer robot very short, about 4mm. When disc projects, there is a danger of collision. Collision can cause breakage of disc and breakdown of system. To prevent collision of disc and transfer robot, projection of disc should be detected. In this paper, we proposed error monitoring method of projecting disc in archive data storage using camera. Proposed algorithm is evaluated by experiments with archive system.

A Study on Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 연구)

  • Jung Ji Won;Choi Myung-Ryul;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.224-231
    • /
    • 2005
  • The present study investigates flow characteristics in an optical disc drive (ODD). Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in a personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity component and velocity spectrum are obtained using the laser Doppler anemometry (LDA), and the flow patterns induced by rotating disc in the ODD are calculated by a commercial finite volume method at the same time. The results show that the front holes reduce flow-induced noise and the position of pickup body only affects flow near the window. Furthermore, it is possible for cooling of heat sources in the drive through measuring the flow fields under the tray. In addition, the numerical results are well matched up to the experimental results, therefore, the validation of the numerical results can be achieved. From the validation of numerical results, it is possible to predict the flow characteristics of the region where it is unable to conduct the experiment.

Analysis of Power Loss of an Optical Disc Drive due to the Tilting Motion of a Rotating Disc (ODD 회전 디스크의 틸팅 각운동에 의한 소모전력 해석)

  • Chong, H.Y.;Sung, S.J.;Jang, G.H.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • This paper measured and analyzed the source of total power loss of an ODD of a notebook computer. It shows that the biggest power loss is the windage loss due to the friction between rotating disk and surrounding air. It measured the power loss by the tilting motion of a rotating disc which is originated from the unbalanced mass of the rotating disc or the squareness between case-rotor and shaft. The power loss of rotating disc due to tilting motion was also calculated by using FLUENT, and it was correlated with the measured one. This paper shows that the one of the effective methods to reduce the power loss of an ODD is to reduce the tilting motion of a rotating disc.

Modelling of Magneto-Elastic Phenomena in Inductive Dynamic Drive

  • Jankowski, Piotr
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1073-1081
    • /
    • 2017
  • Inductive dynamic drives (IDD) are ultra rapid actuators where the moving part (disc) is subjected to impulse force. This paper presents the second model of inductive dynamic drive - a mechanical model where analytic- numerical approach was applied. The magnetic pressure, which was determined on the basis of the results obtained in the electrodynamic model, becomes the input data for mechanical model. Research with application of the mechanical model is necessary in order to determine the proper disc oscillation frequency and to obtain the stress state control for drive elements to be designed. Also, the selection of drive parameters to keep the disc deformation insignificant (while oscillating) is a condition under which these models do not need to be coupled together.

An Experimental Study of Disc Warping in Slim-type Optical Disc Drive (Slim-type 광학식 정보저장기기에서의 디스크 변형에 관한 실험적 연구)

  • Lee, Jae-Sung;Rhim, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.676-681
    • /
    • 2003
  • In this paper, we investigated the disc warping in high-speed slim-type optical disc drive. Recently, the information storage devices are increasing track density and higher rotation speed to enhance their recording capacity and their data transfer rate. Generally, ODD used in the Lap-top Computer has small inner space. So, the flow instability of inner space is rapidly increased as its higher rotation speed. An extreme case, the flow instability causes the malfunction of readout at pick-up of drives. The experiments and numerical analysis were carried out for several cases, the result shows the influence of airflow to the disc warping.

  • PDF