• Title/Summary/Keyword: Disaster model

Search Result 1,766, Processing Time 0.027 seconds

A Study of the Analysis and Prediction Model for the Disaster (사고 분석 및 예측 모델 연구)

  • Park, GilJoo;Lee, KwangJu
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.59-60
    • /
    • 2023
  • 실시간으로 수집되는 사고 정보를 분석하여 해당 사고에 대한 분석적이고 예측적 서비스를 제공하는 것은 중요하다. 특히 발생이 진행 중인 사고에 대한 원인과 피해에 대한 규모 예측은 대응에 강도를 가늠할 수 있는 체계로 재난 발생에 대한 예측과 발생 초기 재난에 대한 분석을 위하여 뉴스 정보와 국민재난안전포털의 안전관리일일상황 정보를 분석할 필요가 있다.

  • PDF

Development and Verifying of Calculation Method of Standard Rainfall on Warning and Evacuation for Forest Soil Sediment Disaster in Mountainous Area by Using Tank Model (Tank Model을 이용한 산지토사재해 경계피난 기준우량 산정법 개발 및 검토)

  • Lee, Chang-Woo;Youn, Ho Joong;Woo, Choong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.272-278
    • /
    • 2009
  • This study was conducted to develope calculation method of standard rainfall, which was used for predicting the outbreaking time of disaster by using Tank model, on warning and evacuation for soil sediment disaster. We investigate adeption possibility of developed method through comparing storage function method with Tank model. We calculated storage amount rainfall by storage function method and Tank model with 36 hillslope failures which have record on outbreaking time of disaster. The result in case of Sedimentary (quarternary period) showed that the difference of outbreaking time was 1.6 hour in case of tank model, but 3.2 hour in case of storage function method. In addition, the deviation of the peak storage were 7% in case of tank model, but 63% in case of storage function method. Total evacuation period was analyzed by using observed 5 years (1993-1997) rainfall data as well as each standard rainfalls which were determinated by two methods. The result showed that evacuation time by storage function method was about twice as many as that by tank model. Therefore, we concluded that calculation by tank model for predicting the outbreaking time of disaster was more useful and accurate than storage function method.

Analysis of Hazard of Disaster in the Aspect of Human Damage (인적 피해 중심의 재해취약성 분석)

  • Wang, Soon-Joo;Lee, Myung-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.1
    • /
    • pp.87-101
    • /
    • 2007
  • The definition and concept of disasters and their preparedness have been changing according to the modern situation. The basic change is that the concept of absolute standard and prevention of hardware damage in the past have been changing to the concept of relative standard and mitigation of direct damage to human. For achieving the purpose, advanced countries developed and used their own analysis method of hazard and vulnerability for disaster ; ASHE hazard and vulnerability evaluation method, hazard matrix method by CDC, FEMA model method and SMUG hazard priority method. Because each analysis method cannot evaluate the hazard and vulnerability for specific disaster, the advantages and disadvantages should be applied for specific situation of disaster in Korea and new analysis method should be extracted in the future.

  • PDF

Diagnosis of Flood Preparedness in Community Using Questionnaires (설문을 활용한 지역사회 홍수 대비능력 진단)

  • Moon, Seung-Rok;Yang, Seung-Man;Choi, Seon-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.82-88
    • /
    • 2014
  • Recently, the concepts of community adaptation and ability to restore have been emphasized in order to evaluate disaster vulnerability and risk exposure level. In particular, the concept of disaster management that voluntarily takes measures prior to disaster situations has been introduced based on participatory disaster management that the community should take responsibility for one's own safety. This study diagnosed the community response capability on four model areas such as Goseong-gun and Gimhae-si, Gyeongsangnam-do and Gimcheon-si and Bonghwa-gun, Gyeongsangbuk-do and represented the Community Preparedness Indicator(CPI) for each region as a result.

Automatic Generation of a SPOT DEM: Towards Coastal Disaster Monitoring

  • Kim, Seung-Bum;Kang, Suk-Kuh
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.121-129
    • /
    • 2001
  • A DEM(digital elevation model) is generated from a SPOT panchromatic stereo-pair using automated algorithms over a 8 km$\times$10 km region around Mokpo city. The aims are to continue the accuracy assessment over diverse conditions and to examine the applicability of a SPOT DEM for coastal disaster monitoring. The accuracy is assessed with respect to three reference data sets: 10 global positioning system records, 19 leveling data, and 1:50,000 topography map. The planimetric error is 10.6m r.m.s. and the elevation erroer ranges from 12.4m to 14.4m r.m.s.. The DEM accuracy of the flat Mokpo region is consistent with that over a mountainous area, which supports the robustness of the algorithms. It was found that coordinate transformation errors are significant at a few meters when using the data from leveling and topographic maps. The error budget is greater than the requirements for coastal disaster monitoring. Exploiting that a sub-scene is used, the affine transformation improves the accuracy by 50% during the camera modeling.

Construction site disaster risk analysis method Using big data Considering individual work units of construction partner company (협력업체 작업 단위를 고려한 빅데이터 기반 건설현장 재해위험도 분석 방안)

  • Choi, Hochang;Lee, Jung-chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.265-266
    • /
    • 2023
  • Recently, many disasters have occurred due to poor management of construction site. In addition, as legal regulations on safety management at construction sites are strengthened, its importance is being further emphasized. In relation to smart safety management technology, a study was introduced to build an analysis model through various safety-related data collected within construction companies. This model derives quantitative disaster risk about the site level through information related to past disasters and near misses. However, construction work is performed separately by work group of each partner company. There is a limitation in that individual workers cannot directly experience this analysis information. In this study, we propose a method to derive the safety disaster risk of individual work units from disaster risk of the site level. We expect that this study to be helpful for smart safety management technology of construction sites.

  • PDF

Disaster Assessment and Mitigation Planning: A Humanitarian Logistics Based Approach

  • Das, Kanchan;Lashkari, R.S.;Biswas, N.
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.336-350
    • /
    • 2013
  • This paper proposes a mathematical modeling-based approach for assessing disaster effects and selecting suitable mitigation alternatives to provide humanitarian relief (HR) supplies, shelter, rescue services, and long-term services after a disaster event. Mitigation steps, such as arrangement of shelter and providing HR items (food, water, medicine, etc.) are the immediate requirements after a disaster. Since governments and non-governmental organizations (NGOs) providing humanitarian aid need to know the requirements of relief supplies and resources for collecting relief supplies, organizing and initiating mitigation steps, a quick assessment of the requirements is the precondition for effective disaster management. Based on satellite images from weather forecasting channels, an area/dimension of the disaster-affected zones and the extent of the overall damage may often be obtained. The proposed approach then estimates the requirements for HR supplies, supporting resources, and rescue services using the census and other government data. It then determines reliable transportation routes, optimum collection and distribution centers, alternatives for resource support, rescue services, and long-term help needed for the disaster-affected zones. A numerical example illustrates the applicability of the model in disaster mitigation planning.

Monitoring Flood Disaster Using Remote Sensing Data

  • Chengcai, Zhang;Xiuwan, Chen;Gaolong, Zhu;Wenjiang, Zhang;Peng, Sun-Chun
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.280.2-286
    • /
    • 1998
  • Flood is the main natural disaster mostly in the world. It is a care problem to prevent flood disaster generally. The frequency of flood disaster is high and the distributing field is wide, the 50 percent population and 70 percent properties distribute at the threaten field of flood disaster in China. Flood disaster has caused a huge amount of economical losses and these losses have an increasing trend. Along with the development of reducing natural disaster action, it has become one of the most attentive problems for monitoring flood, preventing flood and forecasting flood efficiently. Remote sensing has the characteristics of large spatial observing areas, wide spectrum ranges, and imaging far away from the targets, imaging capabilities all weather. Spatial remote sensing information, which records the full, processes of the disaster's occurrence and development in real-time. It is a scientific basis for management, planning and decision-making. Through systemic analyzing the RS monitoring theory, based on compounding RS information, the technology and method of monitoring flood disaster are studied.

  • PDF

Anti-sparse representation for structural model updating using l norm regularization

  • Luo, Ziwei;Yu, Ling;Liu, Huanlin;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.477-485
    • /
    • 2020
  • Finite element (FE) model based structural damage detection (SDD) methods play vital roles in effectively locating and quantifying structural damages. Among these methods, structural model updating should be conducted before SDD to obtain benchmark models of real structures. However, the characteristics of updating parameters are not reasonably considered in existing studies. Inspired by the l norm regularization, a novel anti-sparse representation method is proposed for structural model updating in this study. Based on sensitivity analysis, both frequencies and mode shapes are used to define an objective function at first. Then, by adding l norm penalty, an optimization problem is established for structural model updating. As a result, the optimization problem can be solved by the fast iterative shrinkage thresholding algorithm (FISTA). Moreover, comparative studies with classical regularization strategy, i.e. the l2 norm regularization method, are conducted as well. To intuitively illustrate the effectiveness of the proposed method, a 2-DOF spring-mass model is taken as an example in numerical simulations. The updating results show that the proposed method has a good robustness to measurement noises. Finally, to further verify the applicability of the proposed method, a six-storey aluminum alloy frame is designed and fabricated in laboratory. The added mass on each storey is taken as updating parameter. The updating results provide a good agreement with the true values, which indicates that the proposed method can effectively update the model parameters with a high accuracy.

A Multi-agent based simulation Model for evacuees escaping from Tsunami disaster -To evaluate the evacuees escaping program in Fujisawa city, Japan-

  • Fujioka, Masaki;Ishibashi, Kenichi;Kaji, Hideki;Tsukagoshi, Isao
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.306-312
    • /
    • 2001
  • In this research, we are trying to develop a framework to evaluate the prevention program for Tsunami disaster based on the Multi-agent simulation model. Tsunami has arisen by the earthquake. It happened after flew minutes or few hours when it occurred. It is clear that Tsunami will come after earthquake and from seashore. If we prevent the damage by Tsunami, we should make people who is in the seashore and lived near the seaside escape from there. Moreover we must forecast the escape activity from Tsunami. Former research of this field, some researches try to forecast the escape activity as macro level. However, people who escape from Tsunami is differ from their physical ability and ability of information processing. It needs a more accuracy model to forecast the escape activity of them. Furthermore they make a decision step by step using the various information. Therefore escape activity from Tsunami will describe using an agent based model which can only treat the information processing of human being. In this paper, we develop the evacuation model from Tsunami disaster using the Multi agent based model. The purpose of this study is to analyze the human action pattern when Tsunami occurred, and to make an accurately assessment for damages by Tsunami. The Fujisawa city government is planning and operating the various prevention program far Tsunami. However nobody assess it, because they do not have any simulation models for Tsunami disaster. If they want to set an effective prevention program for Tsunami, they should have any kinds of simulation model. The results of this study are 1) To develop the Multi agent based evacuees escape activity model. 2) Assess the damage of Tsunami in Fujisawa-City.

  • PDF