• Title/Summary/Keyword: Disaster evacuation system

Search Result 150, Processing Time 0.025 seconds

Study on Stagnation Factors Analysis and Improvement Methods through an Evacuation Experiment (피난실험을 통한 피난시간 지연요인 분석과 개선방안에 관한 연구)

  • Han, Woon-Hee
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.57-66
    • /
    • 2018
  • The most urgent requirement in the event of disaster and fire in a skyscraper is to establish a system that enables people inside to evacuate safely. Hence, a practical direction needs to give evacuees confidence in the evacuation by reducing the psychological anxiety caused by the relatively large number of people inside and at the same time, the physically prolonged evacuation travel line. Evacuation tests with large numbers of people were conducted three times to solve these challenges and identify phenomena and issues that occurred during the experiment. The results revealed the factors that could cause a delay in evacuation and suggested improvements. The study results of this paper are as follows. First, a recent fire at a multipurpose high-rise resulted in a number of casualties due to a lack of experience with the disaster prevention system. To prevent such cases from occurring in advance, adaptability was achieved by conducting evacuation tests. Second, the data collected in the evacuation simulation statistics and the actual escape drills were compared and analyzed. Third, in the evacuation experiment, a large number of people could not participate in the experiment. The reasons for not participating were analyzed and their impact on the actual evacuation time was confirmed. Fourth, equipment aids were purchased to establish the optimal response measure to the causes of a delay in escape time and the standards for ensuring the safety of the evacuee were specified by developing improvements to minimize the evacuation delay time through comparative before and after analysis of the experiment. These results can be used for fire safety control of skyscrapers to improve the efficiency of evacuation.

Effects of High School Corridor Walking Obstacles on Evacuation Safety (고등학교 복도 보행 장애물이 피난 안전성에 미치는 영향)

  • Lee Soon Beom
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • This study analyzes the effects of personal lockers, drinking fountains, and all-in-one shutters (hereinafter referred to as "corridor walking obstacles") on evacuation safety to suggest the necessity of operating a more effective educational facility safety certification system. To achieve this purpose, the five-story high school building with the obstacles installed in the corridor has been chosen, and evacuation tests through the Pathfinder Simulation Program have been carried out. When the evacuation exit is designated in the current state, where the students are placed on the 2nd, 3rd, and 4th floors and the corridor walking obstacles are applied as a variable, the required safe egress time (RSET) is 322 seconds. This can lead to dangerous results in the event of a disaster by exceeding the available safe egress time (ASET) standard of 240 seconds by 82 seconds. When students are placed on the 1st, 2nd, and 3rd floors under the same conditions, the RSET is 214.5 seconds, 25.5 seconds lower than the ASET standard, indicating that it is effective in reducing the impact of walking obstacles on evacuation time. The safety management plan for walking obstacles in the corridors is discussed, considering the special characteristics of the school corridors. The results of this study can be used as the necessary data for optimizing evacuation routes in corridors and creating a safe, educational environment.

A Study on the Analysis Method of Safety Cost of Tunnel Accident (터널사고 재난 안전비용 분석 방법에 관한 연구)

  • Baek, Chung-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This paper analyzed a survey of 388 general target samples to analyze the correlation between disaster safety costs and human risk factor analysis and evacuation behavior due to tunnel accidents. Considering the impact of the tunnel accident on disaster safety costs and the correlation between human evacuation and risk factors in the tunnel environment, the system should be reorganized to reflect the tunnel's basic plan, tunnel cross-section, tunnel installation.

Implementation of Emergency Evacuation Support System in Panic-type Disaster (돌발성 재해에 대비한 긴급 피난 지원 시스템의 구현)

  • Hwang, Jun-Su;Choi, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1269-1276
    • /
    • 2016
  • Recently, natural disasters including earthquakes, tsunamis, floods, and snowstorms, in addition to disasters of human origin such as arson, and acts of terror, have caused numerous injuries and fatalities around the world. During such disasters, victims need to obtain information such as the exact location of the disaster and appropriate evacuation routes in order to relocate to safe areas. In this study, We propose the algorithm for Emergency Rescue Evacuation Support System(ERESS). In case a emergency disaster occurs, ERESS is possible to detect it quickly using through the movement of people. The mobile terminal analyzes behavior and location of indoor pedestrian. And it sends the result to the server. The server determines whether an emergency situation occurred or not based on the received transmission information. When an emergency situation occurs, the server will notify it to the mobile terminal. Then, indoor pedestrian conduct emergency evacuation using mobile terminal.

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

A Study on the Development of Smartphone-based Real-time Evacuation Scenarios for Large-scale Buildings (스마트폰을 활용한 중·대규모 건물의 실시간 피난 시나리오 개발에 관한 연구)

  • Kim, Minseok;Kim, Youngsun;Cha, Jieun;Han, Gyu Bin;Choi, Junho
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.1
    • /
    • pp.15-26
    • /
    • 2020
  • The purpose of this study is to develop every possible real-time evacuation scenarios for large-scale buildings which considering continuously changing conditions during the events. From the review of the previous studies on smartphone-based real-time evacuation systems, this study proposed the customized egress scenarios. The scenario considered the characteristics of facilities, disaster types, and individual factors of evacuees. This study verified the proposed process for real-time evacuation scenarios by applying the several actual fire cases happened recently in Korea. Based on the result of this research, necessary technologies for the real-time evacuation systems are identified and can be applied to develop the more effective evacuation system.

Deep learning based optimal evacuation route guidance system in case of structure fire disaster (딥러닝 기반의 구조물 화재 재난 시 최적 대피로 안내 시스템)

  • Lim, Jae Don;Kim, Jung Jip;Hong, Dueui;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1371-1376
    • /
    • 2019
  • In case of fire in a structure, it is difficult to suppress fire because it can not accurately grasp the location of fire in case of fire. In this paper, we propose a system algorithm that can guide the optimal evacuation route in case of deep learning-based (RNN) structure disaster. The present invention provides a service to transmit data detected by sensors to a server in real time by using installed sensor, to transmit and analyze information such as temperature, heat, smoke, toxic gas around the sensor, to identify the safest moving path within a set threshold, to transmit information to LED guide lights and direction indicators in a structure in real time to avoid risk factors. This is because the information of temperature, heat, smoke, and toxic gas in each area of the structure can be grasped, and it is considered that the optimal evacuation route can be guided in case of structure disaster.

Preventing disaster system of the subaqueous tunnel under the Han river in the Bundang railway (분당선 한강 하저터널의 방재시스템)

  • Kim Yong-Il;Hwang Nak-Yeon;Yoon Young-Hoon;Jie Hong-Keun;Jang Sung-Wook;Kim Dong-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.308-327
    • /
    • 2004
  • As use of tunnels and subways increase there also are accidents proportionate to it. Daegu Subway Station fire, Hongjimoon tunnel fire led people to be conscious of disaster protection and as a result, there is a trend to adopt standards for fire protection. Accordingly, this thesis is focused on investigating various fire and water protection related issues for subaqueous tunnel under Ran river. The thesis developed evacuation and disaster prevention plan as fire level increases and have identified the suitability of disaster prevention through evacuation and fire simulation, countermeasure of a water leakage during construction and operation considering the subaqueous tunnel. And we selected EPB shield TBM equipment considering the ground condition and effect of boring hole, and accomplished reasonable water protection design through setting goals using event-tree method, as well as examining model test of boring hole and flooding in heavy rain. Also included structured total system consist of water leakage sensing system, water protection gate, pumping system and fire protection system to respond systematically in emergency.

  • PDF

A Conceptual Study on Disaster Detection and Response System (재난전조 감지 및 재난대응 시스템에 관한 개념연구)

  • Park, Mi-yun;Koo, Won-yong;Park, Wan-soon;Kwon, Se-gon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • If a disaster occurs in the underground like subway, disaster response system should minimize the casualties. It must quickly guide passengers to a safe evacuation route. But sometimes the system does not work properly. And then they need distributed disaster response system which make decision autonomously. We perform conceptual research about distributed autonomous decision-making disaster detection and response system and disaster detection method.