• Title/Summary/Keyword: Disaster Uncertainty

Search Result 94, Processing Time 0.028 seconds

Scenario-Based Optimization of Patient Distribution and Medical Resource Allocation in Disaster Response (시나리오 기반 환자 분배 및 의료진 할당을 위한 재난 대응 최적화 모형 연구)

  • Jin, Sukho;Kim, Jangyeop;Kim, Kyungsup;Jeong, Sukjae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.151-162
    • /
    • 2014
  • This study proposes an optimization model to plan the patient distribution and medical resource allocation considering the diverse characteristics of disaster. For reflecting the particularity of disaster response, we configured a few scenarios such as availability of emergency surgery of non-major medical staff and the change in number of patients estimated reflecting the uncertainty, urgency and convergence of disaster. And we finally tested the effects of the scenarios' combination on the objective function defined as maximum number of survival patients. Our experimental results are expected to highlight the significance of the proposed model as well as the applicability of scenarios under disaster response.

Sensitivity Analysis in the Prediction of Coastal Erosion due to Storm Events: case study-Ilsan beach (태풍 기인 연안침식 예측의 불확실성 분석: 사례연구-일산해변)

  • Son, Donghwi;Yoo, Jeseon;Shin, Hyunhwa
    • Journal of Coastal Disaster Prevention
    • /
    • v.6 no.3
    • /
    • pp.111-120
    • /
    • 2019
  • In coastal morphological modelling, there are a number of input factors: wave height, water depth, sand particle size, bed friction coefficients, coastal structures and so forth. Measurements or estimates of these input data may include uncertainties due to errors by the measurement or hind-casting methods. Therefore, it is necessary to consider the uncertainty of each input data and the range of the uncertainty during the evaluation of numerical results. In this study, three uncertainty factors are considered with regard to the prediction of coastal erosion in Ilsan beach located in Ilsan-dong, Ulsan metropolitan city. Those are wave diffraction effect of XBeach model, wave input scenario and the specification of the coastal structure. For this purpose, the values of mean wave direction, significant wave height and the height of the submerged breakwater were adjusted respectively and the followed numerical results of morphological changes are analyzed. There were erosion dominant patterns as the wave direction is perpendicular to Ilsan beach, the higher significant wave height, and the lower height of the submerged breakwater. Furthermore, the rate of uncertainty impacts among mean wave direction, significant wave height and the height of the submerged breakwater are compared. In the study area, the uncertainty influence by the wave input scenario was the largest, followed by the height of the submerged breakwater and the mean wave direction.

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris

  • Huang, Peng;Wang, Feng;Fu, Anmin;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.17-41
    • /
    • 2016
  • To address the uncertainty of the flight trajectories caused by the turbulence and gustiness of the wind field over the roof and in the wake of a building, a 3-D probabilistic trajectory model of flat-type wind-borne debris is developed in this study. The core of this methodology is a 6 degree-of-freedom deterministic model, derived from the governing equations of motion of the debris, and a Monte Carlo simulation engine used to account for the uncertainty resulting from vertical and lateral gust wind velocity components. The influence of several parameters, including initial wind speed, time step, gust sampling frequency, number of Monte Carlo simulations, and the extreme gust factor, on the accuracy of the proposed model is examined. For the purpose of validation and calibration, the simulated results from the 3-D probabilistic trajectory model are compared against the available wind tunnel test data. Results show that the maximum relative error between the simulated and wind tunnel test results of the average longitudinal position is about 20%, implying that the probabilistic model provides a reliable and effective means to predict the 3-D flight of the plate-type wind-borne debris.

Assessment of the uncertainty in the SWAT parameters based on formal and informal likelihood measure (정형·비정형 우도에 의한 SWAT 매개변수의 불확실성 평가)

  • Seong, Yeon Jeong;Lee, Sang Hyup;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.931-940
    • /
    • 2019
  • In hydrologic models, parameters are mainly used to reflect hydrologic elements or to supplement the simplified models. In this process, the proper selection of the parameters in the model can reduce the uncertainty. Accordingly, this study attempted to quantify the uncertainty of SWAT parameters using the General Likelihood Uncertainty Estimation (GLUE). Uncertainty analysis on SWAT parameters was conducted by using the formal and informal likelihood measures. The Lognormal function and Nash-Sutcliffe Efficiency (NSE) were used for formal and informal likelihood, respectively. Subjective factors are included in the selection of the likelihood function and the threshold, but the behavioral models were created by selecting top 30% lognormal for formal likelihood and NSE above 0.5 for informal likelihood. Despite the subjectivity in the selection of the likelihood and the threshold, there was a small difference between the formal and informal likelihoods. In addition, among the SWAT parameters, ALPHA_BF which reflects baseflow characteristics is the most sensitive. Based on this study, if the range of SWAT model parameters satisfying a certain threshold for each watershed is classified, it is expected that users will have more practical or academic access to the SWAT model.

Sensitivity Analysis of FDS Results for the Input Uncertainty of Fire Heat Release Rate (화재 열발생률 입력 불확실도에 대한 FDS 결과의 민감도 분석)

  • Cho, Jae-Ho;Hwang, Cheol-Hong;Kim, Joosung;Lee, Sangkyu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • A sensitivity analysis of FDS(Fire Dynamics Simulator) results for the input uncertainty of heat release rate (Q) which might be the most influencing parameter to fire behaviors was performed. The calculated results were compared with experimental data obtained by the OECD/NEA PRISME project. The sensitivity of FDS results with the change in Q was also compared with the empirical correlations suggested in previous literature. As a result, the change in the specified Q led to the different dependence of major quantities such as temperature and species concentrations for the over- and under-ventilated fire conditions, respectively. It was also found that the sensitivity of major quantities to uncertain value of Q showed the significant difference in results obtained using the previous empirical correlations.

Large Scale Rainfall-runoff Analysis Using SWAT Model: Case Study: Mekong River Basin (SWAT 모형을 이용한 대유역 강우-유출해석: 메콩강 유역을 중심으로)

  • Lee, Dae Eop;Yu, Wan Sik;Lee, Gi Ha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.47-57
    • /
    • 2018
  • This study implemented the rainfall-runoff analysis of the Mekong River basin using the SWAT (Soil and Water Assessment Tool). The runoff analysis was simulated for 2000~2007, and 11 parameters were calibrated using the SUFI-2 (Sequential Uncertainty Fitting-version 2) algorithm of SWAT-CUP (Calibration and Uncertainty Program). As a result of analyzing optimal parameters and sensitivity analysis for 6 cases, the parameter ALPHA_BF was found to be the most sensitive. The reproducibility of the rainfall-runoff results decreased with increasing number of stations used for parameter calibration. The rainfall-runoff simulation results of Case 6 showed that the RMSE of Nong Khai and Kratie stations were 0.97 and 0.9, respectively, and the runoff patterns were relatively accurately simulated. The runoff patterns of Mukdahan and Khong Chaim stations were underestimated during the flood season from 2004 to 2005 but it was acceptable in terms of the overall runoff pattern. These results suggest that the combination of SWAT and SWAT-CUP models is applicable to very large watersheds such as the Mekong for rainfall-runoff simulation, but further studies are needed to reduce the range of modeling uncertainty.

Intelligent excavating system planning process for disaster prevention in earth work (토공사에서의 재해 방지를 위한 지능형 굴삭 시스템의 계획생성과정)

  • Lee, Seung-Soo;Seo, Jong-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.609-612
    • /
    • 2008
  • Since most of the industries have adopted automation system, the industrial disaster has been declined sharply. Also automation system has offered many benefits such as productivity and assured quality. However, the construction industry is still relying on man power and because of this there are many victims occurring due to the industrial disaster. Construction industry has to overcome uncertainty of incidents and changing natural surroundings to actualize automation. Therefore, the efficient working plan and intelligent decision making process are needed to run more developed techniques and automations. Specially to decline the rate of industrial accidents occurred in basic construction in earth work, the automation via excavator is necessary and also the development of planning process system is too. This research is to establish Task Planning System to prevent disaster which is used for planning automated earth work.

  • PDF

A Study on Development of Disaster Prevention Automation System for by using One-chip Type PLC (원칩형 PLC를 이용한 방재용 자동화시스템 개발에 관한 연구)

  • Kwak, Dong-Kurl;Jung, Do-Young;Oh, Sung-Ji;Kim, Soo-Chang;Park, Young-Jik
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.107-108
    • /
    • 2010
  • Uncertainty and insecurity is a serious issue in all aspects of our society today as the change in environmental and societal conditions became more apparent than ever before through various disasters. Thus, it is now an important point in time for the government and responsible firms to implement an innovative scientific disaster management method that can lead to establishing a more secure and stable future. Therefore, authors have developed ubiquitous- based disaster prevention automation system(DPAS). The system would follow up after sensors detecting fires, thefts, torrents, floods, and infrastructural leaks. It prevents disasters in advance by utilizing a wireless communications net or ethernet to conduct real-time monitoring from a remote place. The system also has an advantage as it is designed in a compact size that applies a precision-focused programmable logic controller(PLC) of one-chip type.

  • PDF

A Research on the Vehicle Routing Problem in the Disaster Scene (재난 현장의 구호 자원 운송 차량 경로에 관한 연구)

  • Han, Sumin;Jeong, Hanil;Kim, Kidong;Park, Jinwoo
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.101-117
    • /
    • 2016
  • In 2000s, incidence of natural disaster is increasing continuously. Therefore, the necessity of research on the effective disaster response is emphasized. Korea is not safe from natural disaster. Natural disasters like torrential downpours, typhoons have occurred more frequently than before. In addition disasters like droughts and MERS has also occurred. Therefore, needs for effective systems and algorithms to respond disaster are increased. This study covers the vehicle routing problem for effective logistics in disaster situations caused by natural disasters. The emergency vehicle route problem has different property from the general vehicle route problem. It has the property of the importance of deadline, the uncertain and dynamic demand information, and the uncertainty in information transfer. In this study, a solution that focused on the importance of deadline. In this study, the heuristic solution using the genetic algorithm are suggested. Finally the simulation experiment which reflects the actual environment are conducted to verify the performance of the solution.