• 제목/요약/키워드: Disaster Prevention Performance

검색결과 339건 처리시간 0.024초

지주 형상에 따른 3차원 지반재료 모델의 경기장 보행자용 가드레일 동적성능 평가 (Dynamic Performance of Pedestrian Guardrail System based on 3-D Soil Material Model according to Post Shapes)

  • 양승호;이동우;신영식
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.79-86
    • /
    • 2015
  • This study investigated the embedded depth of guardrail posts through 3-D soil material model and carried out evaluation of the dynamic performance of guard rail. In order to calculate for embedded depth of sloping ground, displacement of guardrail posts is analyzed according to the embedded depth of experiment variables. Through the static test of guardrail posts, the maximum deflection was found to decrease the interval. By performing the dynamic test using the Bogie Car, that is confirmed the elastic modulus of the soil occuring the maximum deflection. Guardrail posts is considered to need for further reinforcement in the larger slope than the plains. This study researched about maximum displacement and deviation velocity through dynamic performance of guardrail system and conducted analysis about protection performance evaluation of passenger.

Seismic performance evaluation of a steel slit damper for retrofit of structures on soft soil

  • Mahammad Seddiq Eskandari Nasab;Jinkoo Kim;Tae-Sang Ahn
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.93-101
    • /
    • 2024
  • This paper presents an experimental and analytical study on a steel slit damper designed as an energy dissipative device for earthquake protection of structures considering soil-structure interaction. The steel slit damper is made of a steel plate with a number of slits cut out of it. The slit damper has an advantage as a seismic energy dissipation device in that the stiffness and the yield force of the damper can be easily controlled by changing the number and size of the vertical strips. Cyclic loading tests of the slit damper are carried out to verify its energy dissipation capability, and an analytical model is developed validated based on the test results. The seismic performance of a case study building is then assessed using nonlinear dynamic analysis with and without soil-structure interaction. The soil-structure system turns out to show larger seismic responses and thus seismic retrofit is required to satisfy a predefined performance limit state. The developed slit dampers are employed as a seismic energy dissipation device for retrofitting the case study structure taking into account the soil-structure interaction. The seismic performance evaluation of the model structure shows that the device works stably and dissipates significant amount of seismic energy during earthquake excitations, and is effective in lowering the seismic response of structures standing on soft soil.

불확실한 지반의 N값이 지중구조물의 내진성능평가에 미치는 영향 (Effect of Uncertain N-values to Seismic Performance Evaluation of Underground Structures)

  • 박지환;이태형
    • 한국재난정보학회 논문집
    • /
    • 제6권2호
    • /
    • pp.45-65
    • /
    • 2010
  • There has been tighten up the need of seismic retrofit about 31 public facilites since published "Korean Earthquake Damage Prevention Law". Therefore, seismic studies have been developed and enforced the studies. Measuring dynamic stiffness of subsurface materials influence on seismic performance evaluation to build up seismic retrofit. The soil dynamic properties for seismic performance evaluation are N-value from using SPT(standard penetration test), dynamic shear elastic modulus and dynamic deformation modulus using laboratory tests. The most unscientific element in ground dynamic properties involved uncertainties is obviously N-value using SPT. This study shows that effect of N-value included natural and artificial uncertainties to seismic performance evaluation of ground structures is not only approached probabilistic analysis using FOSM method and tornado diagram, but also review how to spread effect of seismic performance evaluation of ground structures.

중대재해처벌법 시행에 따른 안전보건경영시스템 개선방안 연구 - H건설사 중심 (A Study on the Safety and Health Management System Improvement Plan according to the Implementation of the Serious Accident Punishment Act - Focused on H Construction Company)

  • 최광은
    • 한국재난정보학회 논문집
    • /
    • 제19권2호
    • /
    • pp.372-382
    • /
    • 2023
  • 연구목적: 중대재해처벌법 시행에 따른 건설사 안전 관리 시스템 개선 방안을 제시한다. 연구방법: H건설사에서 이행 중인 중대 재해 처벌 법 대응 방안에 대한 안전보건관리체계를 안전보건진단을 통해 실무중심의 재해 예방활동의 효과를 분석하였다. 연구결과: 중대재해처벌법과 안전보건경영시스템의 연계로 재해율 감소 효과 및 안전보건경영 체계의 고도화 등이 분석되었고 중대재해처벌법 시행 전·후의 안전 활동 종합결과 분석을 통한 안전보건경영시스템 개선방안을 제시하였다. 결론: 중대재해처벌법 시행에 따른 사업주의 의식 개선, 재해예방을 위한 투자 확대, 재해예방활동의 정량화 등을 통한 실질적인 성과측정의 효과가 발현되었다.

사용 중 지진 가속도계의 정상 측정과 출력전압 선형비 오차율 관계 분석 (Relationship between Normal Measurement and Error Rate of Output Voltage Linear Ratio of Seismic Accelerometer in Use)

  • 김민준;조성철;정용훈;원정훈
    • 한국안전학회지
    • /
    • 제39권2호
    • /
    • pp.65-74
    • /
    • 2024
  • We analyzed the relationship between the normal measurement of the seismic accelerometer (SA) and the error rate of the output voltage linear ratio to propose an evaluation method to determine whether the SA in use is measuring normally. Utilizing a test bed, the regular operation of SA in use was evaluated using acceleration data measured through impact tests since there are no regulations regarding performance testing of SA in use. For the used SA, the error rate of the output voltage linear ratio, which is a major performance criterion, was evaluated. We analyzed common characteristics of the SA that satisfied the impact test and the performance criteria of the output voltage linear ratio error rate. The results indicated that we must consider the decreasing trend and convergence of the error rate as the measurement angle increases, ensuring that the average value of the output voltage linear ratio error rate is within 1%.

AWS 분(分) 단위 강우자료를 이용한 서울지역 특성에 따른 행정자치 구(區)별 목표강우량 산정에 관한 연구 (A Study on Estimation of Target Precipitation in Seoul using AWS minutely Rainfall Data)

  • 김민석;손홍민;문영일
    • 한국수자원학회논문집
    • /
    • 제49권1호
    • /
    • pp.11-18
    • /
    • 2016
  • 확률강우량은 수공구조물 설계와 도시방재를 위한 기준 등으로 활용되고 있어, 확률강우량의 산정은 매우 중요하다. 특히 소방방재청에서는 확률강우량으로 우리나라 시 군 단위로 지역방재성능목표를 설정하고 이에 대한 방재성능평가 및 방재성능목표 달성을 위한 개발계획 수립 시 활용하고 있다. 본 연구에서는 현재 시 군 단위로 설정되어 있는 목표 강우량을 구(區) 단위로 산정하고자 기상청의 지상기상관측지점(SSS, Surface Synoptic Stations)과 방재기상관측지점(AWS, Automatic Weather Stations)의 강우자료를 활용하여 지점빈도해석 및 지수홍수법을 이용한 지역빈도해석을 통해 지속시간 1시간, 2시간, 3시간 목표강우량을 산정하였다. 이는 서울지역의 지자체별 방재성능 평가 및 방재관련 업무에 참고자료로 활용할 수 있을 것으로 판단되며, 향후 방재성능목표 설정에 크게 기여할 것으로 판단된다.

화재모델링을 이용한 입출력 변수의 민감도, 상관계수 분석과 주성분 분석 (Analysis of Sensitivity, Correlation Coefficient and PCA of Input and Output Parameters using Fire Modeling)

  • 남기태;김정진;윤석표;김준경
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.46-54
    • /
    • 2019
  • Even though the fire performance-based design concept has been introduced for various structures and buildings, which have their own specific fire performance level, the uncertainties of input parameters always exist and, then, could reduce significantly the reliability of the fire modeling. Sensitivity analysis was performed with three limited input parameters, HRRPUA, type of combustible materials, and mesh size, which are significantly important for fire modeling. The output variables are limited to the maximum HRR, the time reaching the reference temperature($60^{\circ}C$), and that to reach limited visible distance(5 m). In addition, correlation coefficient analysis was attempted to analyze qualitatively and quantitatively the degree of relation between input and output variables above. Finally, the relationship among the three variables is also analyzed by the principal component analysis (PCA) to systematically analyze the input data bias. Sensitivity analysis showed that the type of combustible materials is more sensitive to maximum HRR than the ignition source and mesh size. However, the heat release parameter of the ignition source(HRR) is shown to be much more sensitive than the combustible material types and mesh size to both time to reach the reference temperature and that to reach the critical visible distance. Since the derived results can not exclude the possibility that there is a dependency on the fire model applied in this study, it is necessary to generalize and standardize the results of this study for the fire models such as various buildings and structures.

Disaster warning system using Convolutional Neural Network - Focused on intelligent CCTV

  • Choi, SeungHyeon;Kim, DoHyeon;Kim, HyungHeon;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.25-33
    • /
    • 2019
  • In this paper, we propose an intelligent CCTV technology which is applied to a recent attracted attention real-time object detection technology in a disaster alarm system. Natural disasters are rapidly increasing due to climate change (global warming). Various disaster alarm systems have been developed and operated to solve this problem. In this paper, we detect object through Neuron Network algorithm and test the difference from existing SVM classifier. Experimental results show that the proposed algorithm overcomes the limitations of existing object detection techniques and achieves higher detection performance by about 15%.

IPA기법을 이용한 거푸집 붕괴재해에 대한 건설근로자의 인식 분석 (Analysis of the Construction Workers Perception of Formwork Collapse Disaster using IPA Technique)

  • 강성원;신윤석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.113-114
    • /
    • 2020
  • During the construction work, many deaths and injuries have occurred in the formwork. This study aims to analyze the perceptions of construction workers about the disaster of formwork collapse. In this study, the IPA(Importance-Performance Analysis) technique was used to analyze the perception of construction workers and derive urgent factors for improvement. As a result of IPA analysis, the fourth quadrant factor needed to be improved first, and the second quadrant factor needed effort distribution. Therefore, it is judged that this study can be used as basic data for safety management and disaster prevention activities.

  • PDF

Viscous damping effects on the seismic elastic response of tunnels in three sites

  • Sun, Qiangqiang;Bo, Jingshan;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • 제18권6호
    • /
    • pp.639-650
    • /
    • 2019
  • Time-domain commercial codes are widely used to evaluate the seismic behavior of tunnels. Those tools offer a good insight into the performance and the failure mechanism of tunnels under earthquake loading. Viscous damping is generally employed in the dynamic analysis to consider damping at very small strains in some cases, and the Rayleigh damping is commonly used one. Many procedures to obtain the damping parameters have been proposed but they are seldom discussed. This paper illustrates the influence of the Rayleigh damping formulation on the tunnel visco-elastic behavior under earthquake. Four Rayleigh damping determination procedures and three soil shear velocity profiles are accounted for. The results show significant differences in the free-field and in the tunnel response caused by different procedures. The difference is somewhat decreased when the soil site fundamental frequency is increased. The conventional method which consists of using solely the first soil natural mode to determine the viscous damping parameters may lead to an unsafe seismic design of the tunnel. In general, using five times site fundamental frequency to obtain the damping formulation can provide relatively conservative results.