• Title/Summary/Keyword: Disaster Management Capacity

Search Result 102, Processing Time 0.027 seconds

Application of Regression Tree Model for the Estimation of Groundwater Use at the Agricultural (Dry-field Farming and Rice Farming) Purpose Wells (농업용(전작 및 답작용) 지하수 이용량 추정을 위한 회귀나무 모형의 적용)

  • Kim, yoo-Bum;Hwang, Chan-Ik
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.417-425
    • /
    • 2019
  • Agricultural groundwater use accounts for 51.8% of total groundwater use, so accurate estimation of groundwater use is important for efficient groundwater management. The purpose of this study is to develop a method for estimating the groundwater use of agricultural (rice farming and dry-field farming) wells using regression tree model based on the measured data of 370 wells. Three input variables of the model were evaluated as being significant: well depth, pipe diameter, and pump capacity, and the importance of each variable was 75% for well depth, 17% for pipe diameter, and 8% for pumping capacity. The daily usage of agricultural (rice farming and dry-field farming) wells by the regression tree model was estimated to be very similar to the actual usage, compared to the previous estimation method proposed by the Ministry of Construction and Transportation. In the future, it is expected that the reliability of the usage statistics will be improved if additional observed data is secured and this classification method is modified.

A Study on the Resilient Supply of Agricultural Water in Jeju Island by Forecasting Future Demand (미래 수요예측을 통한 제주도 농업용수 회복탄력적 공급 방안에 관한 연구)

  • Go, Jea-han;Jeung, Minhyuk;Beom, Jina;Sung, Mu-hong;Jung, Hyoung-mo;Yoo, Seung-hwan;Yoon, Kwang-sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.71-83
    • /
    • 2020
  • Resilience is the capacity to maintain essential services under a range of circumstances from normal to extreme. It is achieved through the ability of assets, networks, systems and management to anticipate, absorb and recover from disturbance. It requires adaptive capacity in respect of current and future risks and uncertainties as well as experience to date. The agricultural infrastructures with high resilience can not only reduce the size of the disaster relatively, but also minimize the loss by reducing the time required for recovery. This study aims to evaluate the most suitable drought countermeasures with the analysis of various resilience indices by predicting future agricultural water shortage under land use and climate change scenarios for agricultural areas in Jeju Island. The results showed that the permanent countermeasure is suitable than the temporary countermeasures as drought size and the cost required for recovery increase. Wide-area water supply system, which is a kind of water grid system, is identified as the most advantageous among countermeasures. It is recommended to evaluate the capability of agricultural infrastructure against drought with the various Resilience Indices for reliable assessment of long-term effect.

Maximizing of hydropower generation of Hwacheon Reservoir using HEC-ResPRM model

  • Karimizadeh, Keivan;Choi, Changwon;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.219-219
    • /
    • 2015
  • Hwacheon Reservoir is one of the reservoirs, which are located on the North Han River in South Korea. Construction of this reservoir was started in 1939 and completed in 1944. At the upstream of this reservoir there are Peace Reservoir, which is located in South Korea and Imnam Reservoir, which is located in North Korea. After construction of Imnam Reservoir, inflow regularity of Hwacheon Reservoir was changed and inflow of Hwacheon Reservoir also, was decreased. Peace Reservoir is used to decrease flood and damage at downstream due to unexpected release from Imnam Reservoir. This reservoir also, has a special role to regulate inflow of Hwacheon Reservoir. Hwacheon Reservoir has an important role for hydropower generation and flood control. Capacity and maximum discharge capacity of Hwacheon Reservoir are 1018 million $m^3$ and $9500m^3/s$, respectively. This reservoir has four generators to produce power and it is one of the important reservoirs for hydropower generation in South Korea. Due to the important role of this reservoir in generating power, maximization of hydropower generation of this reservoir is important and necessary. For this purpose, HEC-ResPRM model was applied in this study. HEC-ResPRM is a useful and applicable model to operate reservoirs and it gives optimal value for release to maximize power by minimizing penalty functions. In this study, after running the model, amount of release was optimized and hydropower generation was maximized by allocating more water for hydropower release instead of spillway release. Also, the model increased release in dry period from October to June to prevent high amount of release in flood season from July to September.

  • PDF

Time-Dependent Optimal Routing in Indoor Space (실내공간에서의 시간 가변적 최적경로 탐색)

  • Park, In-Hye;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.361-370
    • /
    • 2009
  • As the increasing interests of spatial information for different application area such as disaster management, there are many researches and development of indoor spatial data models and real-time evacuation management systems. The application requires to determine and optical paths in emergency situation, to support evacuees and rescuers. The optimal path in this study is defined to guide rescuers, So, the path is from entrance to the disaster site (room), not from rooms to entrances in the building. In this study, we propose a time-dependent optimal routing algorithm to develop real-time evacuation systems. The network data that represents navigable spaces in building is used for routing the optimal path. Associated information about environment (for example, number of evacuees or rescuers, capacity of hallways and rooms, type of rooms and so on) is assigned to nodes and edges in the network. The time-dependent optimal path is defined after concerning environmental information on the positions of evacuees (for avoiding places jammed with evacuees) and rescuer at each time slot. To detect the positions of human beings in a building per time period, we use the results of evacuation simulation system to identify the movement patterns of human beings in the emergency situation. We use the simulation data of five or ten seconds time interval, to determine the optimal route for rescuers.

  • PDF

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

Developing an Occupants Count Methodology in Buildings Using Virtual Lines of Interest in a Multi-Camera Network (다중 카메라 네트워크 가상의 관심선(Line of Interest)을 활용한 건물 내 재실자 인원 계수 방법론 개발)

  • Chun, Hwikyung;Park, Chanhyuk;Chi, Seokho;Roh, Myungil;Susilawati, Connie
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.667-674
    • /
    • 2023
  • In the event of a disaster occurring within a building, the prompt and efficient evacuation and rescue of occupants within the building becomes the foremost priority to minimize casualties. For the purpose of such rescue operations, it is essential to ascertain the distribution of individuals within the building. Nevertheless, there is a primary dependence on accounts provided by pertinent individuals like building proprietors or security staff, alongside fundamental data encompassing floor dimensions and maximum capacity. Consequently, accurate determination of the number of occupants within the building holds paramount significance in reducing uncertainties at the site and facilitating effective rescue activities during the golden hour. This research introduces a methodology employing computer vision algorithms to count the number of occupants within distinct building locations based on images captured by installed multiple CCTV cameras. The counting methodology consists of three stages: (1) establishing virtual Lines of Interest (LOI) for each camera to construct a multi-camera network environment, (2) detecting and tracking people within the monitoring area using deep learning, and (3) aggregating counts across the multi-camera network. The proposed methodology was validated through experiments conducted in a five-story building with the average accurary of 89.9% and the average MAE of 0.178 and RMSE of 0.339, and the advantages of using multiple cameras for occupant counting were explained. This paper showed the potential of the proposed methodology for more effective and timely disaster management through common surveillance systems by providing prompt occupancy information.

Analysis on Construction Clients' Role for Safety and Health Management in Plan, Design, and Construction Stage (건설공사 발주자의 계획, 설계, 공사단계 안전보건관리 역할 분석)

  • Lim, Se Jong;Jeong, Seong-choon;Na, Ye Ji;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.24-31
    • /
    • 2020
  • The duty of construction clients in WSH (Workplace Safety and Health) system was included in the amendment of Occupational Safety and Health Act (enforced on 16 January 2020), which was estimated the shift of paradigm in the prevention of construction accidents. The purpose of this paper is to introduce the analysis results of construction clients' role in the construction project, which were performed by authors over the recent years in order to impose the duty on construction clients, and to suggest their role according the plan, design, and construction stage. Utilizing the systematic literature review process based on Meta analysis, the related papers were selected. For the selected papers, related domestic and foreign regulations, and other prominent report, the construction clients' role was analyzed by reflecting the experts' advice. Results show that the construction clients should control the designer and contractor for implementing the WHS system during the whole process of the construction project. They should supply sufficient source and time to ensure the workers' safety. In the plan stage, the key role of construction clients is to identify intensively controlled hazard and risk reduction plan and to transfer the results. In the design stage, their key role is to select the designer with the capacity in WSH and to assist the designer for the safety design. The main key role of construction clients in the costruction stage is to select the contractor with specialty in WSH including a contract reflecting the WSH requirement and to check implementation of WSH plan, WSH cost, WSH education, and accident report. In addition, it is thought that the construction clients' participations in the site WSH activity and adjustment of safety and health problem among contractors can be effect in the prevention of construction accidents.

Improvement of condition assessment criteria and embankment transformation of agricultural reservoirs after raising embankments

  • Lee, Dal-Won;Lee, Young-Hak
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.258-274
    • /
    • 2016
  • Recently, as fluctuations in annual precipitations continue to grow, the frequency of floods and droughts is rapidly increasing. Especially, since many reservoirs are reported as having less capacity and aging faster than large dams, the damages due to floods and droughts are estimated to become more severe. With this background for the present study, field investigation of reservoirs in Chungnam, Chungbuk, and Chonbuk regions was carried out for disaster prevention and the safety management of agricultural reservoirs. Furthermore, embankment transformations were compared and analyzed after the raising of embankments. Based on design methods for remodeling agricultural reservoirs and the results of embankment raising and the problems which occurred on crest, supplementation to the upstream and downstream slopes, control sector, and spillway should be implemented in the existing reservoir. In regard to this, the condition assessment score of compound member of reservoirs was performed, the Chungnam region score was in the 3.11-4.73 range. In addition, reservoirs in Chungbuk scored in the 4.00-4.49 range, and reservoirs in Chonbuk scored in the 3.90-4.60 range. Applying current precision safety inspection practices to small reservoirs requires economic expenses and time, for which assessment items are too varied and complex. Therefore, subdivided condition assessment items and criteria should be improved and streamlined by deleting, reducing, combining, and selecting only the riskiest factors. In the future, reservoirs should be periodically monitored and systemically managed and rational plans for maintenance and repairs should be used as reinforcement methods.

Determination of the Groundwater Yield of horizontal wells using an artificial neural network model incorporating riverside groundwater level data (배후지 지하수위를 고려한 인공신경망 기반의 수평정별 취수량 결정 기법)

  • Kim, Gyoo-Bum;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.583-592
    • /
    • 2018
  • Recently, concern has arisen regarding the lowering of groundwater levels in the hinterland caused by the development of high-capacity radial collector wells in riverbank filtration areas. In this study, groundwater levels are estimated using Modflow software in relation to the water volume pumped by the radial collector well in Anseongcheon Stream. Using the water volume data, an artificial neural network (ANN) model is developed to determine the amount of water that can be withdrawn while minimizing the reduction of groundwater level. We estimate that increasing the pumping rate of the horizontal well HW-6, which is drilled parallel to the stream direction, is necessary to minimize the reduction of groundwater levels in wells OW-7 and OB-11. We also note that the number of input data and the classification of training and test data affect the results of the ANN model. This type of approach, which supplements ANN modeling with observed data, should contribute to the future groundwater management of hinterland areas.