• Title/Summary/Keyword: Disaster Communication

Search Result 621, Processing Time 0.027 seconds

Remote Control of Movable Robot Arm using Gyro Sensor and Flex Sensor (자이로센서와 플렉스 센서를 이용한 이동형 로봇팔 원격 제어)

  • Jang, Jae-Seok;Kim, Min-Soo;Kim, Seong-Jin;Lee, Cheol-Keun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1205-1212
    • /
    • 2021
  • Robots that can actually help people a lot by dealing with dangerous tasks that are difficult for people to do, such as disaster situations, lifesaving, handling dangerous goods, and reconnaissance of dangerous areas, continue to become an issue. Therefore, in this paper, we intend to implement a mobile robot arm that can implement a human motion will on the robot arm to enable active response according to the situation and control the vehicle according to hand movements to give mobility. A controller is manufactured using a flex sensor and agyro sensor, and the roll and pitch values of the two gyro sensors are adjusted to control the angle of the robot arm and specify the vehicle direction. In addition, by designating the levels of the three flex sensors, the motor is operated according to hand movements, and a robot arm is implemented so that objects can be picked up and moved.

Implementation of Dynamic Context-Awareness Platform for Internet of Things(IoT) Loading Waste Fire-Prevention based on Universal Middleware (유니버설미들웨어기반의 IoT 적재폐기물 화재예방 동적 상황인지 플랫폼 구축)

  • Lee, Hae-Jun;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1231-1237
    • /
    • 2022
  • It is necessary to dynamic recognition system with real time loading height and pressure of the loading waste, the drying of wood, batteries, and plastic wastes, which are representative compositional wastes, and the carbonization changes on the surface. The dynamic context awareness service constituted a platform based on Universal Middleware system using BCN convergence communication service as a Ambient SDK model. A context awareness system should be constructed to determine the cause of the fire based on the analysis data of fermentation heat point with natural ignition from the load waste. Furthermore, a real-time dynamic service platform that could be apply to the configuration of scenarios for each type from early warning fire should be built using Universal Middleware. Thus, this issue for Internet of Things realize recognition platform for analyzing low temperature fired fire possibility data should be dynamically configured and presented.

Selecting the Geographical Optimal Safety Site for Offshore Wind Farms to Reduce the Risk of Coastal Disasters in the Southwest Coast of South Korea (국내 서남해권 연안재해 리스크 저감을 위한 지리적 해상풍력단지 최적 입지 안전구역 선정 연구)

  • Kim, Jun-Gho;Ryu, Geon-Hwa;Kim, Young-Gon;Kim, Sang-Man;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.1003-1012
    • /
    • 2022
  • The horizontal force transfer to the turbine and substructure of a wind power generation system is a very important factor in maintaining the safety of the system, but it is inevitably vulnerable to large-scale coastal disasters such as earthquakes and typhoons. Wind power generation systems built on the coast or far offshore are very disadvantageous in terms of economic feasibility due to an increase in initial investment cost because a more robust design is required when installed in areas vulnerable to coastal disasters. In this study, the GIS method was used to select the optimal site for a wind farm from the viewpoint of reducing the risk of coastal disasters. The current status of earthquakes in the West and South Seas of Korea, and the path and intensity of typhoons affecting or passing through the West and South Seas were also analyzed. Accordingly, the optimal offshore wind farm site with the lowest risk of coastal disasters has been selected and will be used as basic research data for offshore wind power projects in the region in the future.

Evaluation of Agricultural Drought Disaster Vulnerability Using Analytic Hierarchy Process (AHP) and Entropy Weighting Method (계층화분석 및 엔트로피 가중치 산정 방법에 따른 농업가뭄재해 취약성 평가)

  • Mun, Young-Sik;Nam, Won-Ho;Yang, Mi-Hye;Shin, Ji-Hyeon;Jeon, Min-Gi;Kim, Taegon;Lee, Seung-Yong;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.13-26
    • /
    • 2021
  • Recent drought events in the South Korea and the magnitude of drought losses indicate the continuing vulnerability of the agricultural drought. Various studies have been performed on drought hazard assessment at the regional scales, but until recently, drought management has been response oriented with little attention to mitigation and preparedness. A vulnerability assessment is introduced in order to preemptively respond to agricultural drought and to predict the occurrence of drought. This paper presents a method for spatial, Geographic Information Systems-based assessment of agricultural drought vulnerability in South Korea. It was hypothesized that the key 14 items that define agricultural drought vulnerability were meteorological, agricultural reservoir, social, and adaptability factors. Also, this study is to analyze agricultural drought vulnerability by comparing vulnerability assessment according to weighting method. The weight of the evaluation elements is expressed through the Analytic Hierarchy Process (AHP), which includes subjective elements such as surveys, and the Entropy method using attribute information of the evaluation items. The agricultural drought vulnerability map was created through development of a numerical weighting scheme to evaluate the drought potential of the classes within each factor. This vulnerability assessment is calculated the vulnerability index based on the weight, and analyze the vulnerable map from 2015 to 2019. The identification of agricultural drought vulnerability is an essential step in addressing the issue of drought vulnerability in the South Korea and can lead to mitigation-oriented drought management and supports government policymaking.

Smoke Modeling and Rendering Techniques using Procedural Functions (절차적 함수를 이용한 연기 모델링 및 렌더링 기법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.905-912
    • /
    • 2022
  • Virtual reality, one of the core technologies of the 4th industrial revolution, is entering a new phase with the spread of low-cost wearable devices represented by Oculus. In the case of disaster evacuation drills, where practical training is almost impossible due to the risk of accidents, virtual reality is becoming a new alternative that enables effective training. In this paper, we propose a smoke modeling method that can be applied to fire evacuation drills implemented with virtual reality technology. In the event of a fire, smoke spreads along the aisle, and the density of the smoke changes over time. The proposed method models the smoke by applying a procedural function that can reflect the density of smoke calculated through simulation to the model in real-time. Implementation results in the background of the factory show that the proposed method produces models that can express the smoke according to the user's movement.

Implementation of Public Address System Using Anchor Technology

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A public address (PA) system installed in a building is a system that delivers alerts, announcements, instructions, etc. in an emergency or disaster situation. As for the products used in PA systems, with the development of information and communication technology, PA products with various functions have been introduced to the market. PA systems recently launched in the market may be connected through a single network to enable efficient management and operation, or use voice recognition technology to deliver quick information in case of an emergency. In addition, a system capable of locating a user inside a building using a location-based service and guiding or responding to a safe area in the event of an emergency is being launched on the market. However, the new PA systems currently on the market add some functions to the existing PA system configuration to make system operation more convenient, but they do not change the complex PA system configuration to reduce facility costs, maintenance, and management costs. In this paper, we propose a novel PA system configuration for buildings using audio networks and control hierarchy over peer-to-peer (Anchor) technology based on audio over IP (AoIP), which simplifies the complex PA system configuration and enables convenient operation and management. As a result of the study, through the emergency signal processing algorithm, fire broadcasting was made possible according to the detection of the existence of a fire signal in the Anchor system. In addition, the control device of the PA system was replaced with software to reduce the equipment installation cost, and the PA system configuration was simplified. In the future, it is expected that the PA system using Anchor technology will become the standard for PA facilities.

A Study on the Use of Wireless Signals of Mobile Phones for Effective Rescue Activities at Fire Sites (화재 현장에서 효과적인 구조활동을 위한 휴대전화의 무선 신호 활용 방안 연구)

  • Kim, Younghyun;Kim, Boseob;Jung, Jongjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.235-236
    • /
    • 2021
  • As a result of analyzing the fire accident of the Jecheon complex that occurred at the end of 2017, there have been many casualties due to delays in checking the location information of isolated people. In order to prevent such an accident, various research has been conducted to estimate the location of requesters by means of detecting wireless communication information of mobile phones existing at disaster sites. The main concept is to detect an RF signal of a mobile phone at fire sites and, based on this, precisely estimate the location of the mobile phone on the LOS/NLOS. However, it is difficult to get visibility at fire sites due to smoke and the fire. Therefore, apart from estimating the location of requesters, a research is also needed to determine the direction of entry within fire sites. In this paper, we propose a method to determine a direction of entry to provide effective rescue activities using wireless communication information of mobile phones.

  • PDF

Evacuation Safety Assessment of Elderly and Children in High-rise Hotels in China

  • Yuanyuan Zhang;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.227-236
    • /
    • 2024
  • Chinese high-rise hotels are large in size, densely populated, and have a lot of combustibles. Once a fire occurs, the fire and smoke spread rapidly, and once a fire accident occurs, it is easy to cause a large number of deaths. Fires have a greater impact on special populations such as elderly and children who move slowly. At present, research mainly focuses on the impact of high-rise building structures on evacuation consequences, but there is very little research on the safety evacuation consequences of elderly people and children in high-rise hotels. This paper focuses on the elderly and children living in high-rise hotels in China. We studied three scenarios in which the elderly and children were placed on high floors, middle floors, and low floors. For the above three scenarios, use pathfinder software for simulation, According to the simulation results, when the elderly and children are mainly concentrated in the lower floors (2nd and 3rd floors), the evacuation time is the shortest, 147 seconds. The evacuation time for the elderly and children on the middle floor (6th and 7th floors) is the longest, at 191.5 seconds. Compared to being placed on high floors, safely staying on low floors for all ages reduces evacuation time by 44.5 seconds and improves evacuation efficiency by 23.24%. The final safety evacuation plan is that in daily safety management, hotels should arrange elderly and children occupants on lower floors as much as possible to reduce the total evacuation time and improve personnel evacuation efficiency. This has great guiding significance in the safety management of high-rise hotels.

Evaluation of Evacuation Safety in University Libraries Based on Pathfinder

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.237-246
    • /
    • 2024
  • In recent years, the frequent occurrence of fire accidents in university libraries has posed significant threats to the safety of students' lives and property, alongside negative social impacts. Accurately analyzing the factors affecting evacuation during library fires and proposing optimized measures for safe evacuation is thus crucial. This paper utilizes a specific university library as a case study, simulating fire evacuation scenarios using the Pathfinder software, to assess and validate evacuation strategies and propose relevant optimizations. Pathfinder, developed by Thunderhead Engineering in the United States, is an intuitive and straightforward personnel emergency evacuation assessment system, offering advanced visualization interfaces and 3D animation effects. This study aims to construct evacuation models and perform simulation analysis for the selected university library using Pathfinder. The library's structural layout, people flow characteristics, and the nature of fire and smoke spread are considered in the analysis. Additionally, evacuation scenarios involving different fire outbreak locations and the status of emergency exits are examined. The findings underscore the importance of effective evacuation in fire situations, highlighting how environmental conditions, individual characteristics, and behavioral patterns significantly influence evacuation efficiency. Through these investigations, the study enhances understanding and optimization of evacuation strategies in fire scenarios, thereby improving safety and efficiency. The research not only provides concrete and practical guidelines for building design, management, and emergency response planning in libraries but also offers valuable insights for the design and management of effective evacuation systems in buildings, crucial for ensuring occupant safety and minimizing loss of life in potential hazard situations

Design of CIC Interpolators with Improved Passband and Transition Region for Underwater Acousitc Communication (통과대역 및 전이영역 특성이 개선된 수중음파통신용 CIC 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.660-665
    • /
    • 2018
  • Research into underwater wireless networks that enable the monitoring and controlling of the ocean environments has been continuing for disaster prevention and military proposes, as well as for the exploitation of ocean resources throughout the world. A research group led by Hoseo university has been studying a distributed underwater monitoring and controlling network. In this study, we developed an interpolator for acoustic communication between an underwater base station controller and underwater base station, which is included in this network. The underwater acoustic communication provided by this network defines four links whose sampling rates are different. Low power consumption is one of the most important requirements. Therefore, we adopted CIC interpolators, which are known to act as filters with a low power consumption, and some CIC interpolators with an appropriate changing rate were selected depending on the link. However, these interpolators have a large passband drop and wide transition region. To solve these problems, we added a compensator and half-band filter. After verifying the algorithm by using Matlab, we designed and verified it with Verilog-HDL in a ModelSim environment.