• 제목/요약/키워드: Disappearing root rot

검색결과 4건 처리시간 0.015초

Toxicity of Fungicides in vitro to Cylindrocarpon destructans

  • A.Monique Ziezold;Robert Hall;Richard D.Reeleder;John T.A.Proctor
    • Journal of Ginseng Research
    • /
    • 제22권4호
    • /
    • pp.223-228
    • /
    • 1998
  • As part of a study on the ability of fungicides to control disappearing root rot of ginseng (Panax quinquvdius) caused by Cylindruarpn destmtans, 15 fungicides were screened for toxicity to the fungus in vitro. Highly toxic fungicides were Benlate (benomyl), Thiram (thiram), and Orbit (propiconazole). EC5O values (mg a.i./L) were less than 1 and EC95 values were less than 10. Crown (carbathiin and thiabendazole), ASC-66835 (fluazinam), and UBI-2584 (tebuconazole) were moderately toxic, with EC5O values in the range 1-10 and EC95 values in the range 32-45. Weakly toxic fungicides (EC5O in the range 20-80, EC95 in the range 35-140) included UBI-2643 (thiabendazole), UBI-2565 (cyproconazole), and Vitaflo-280 (carbathiin and thiram). Anvil (hexaconazole), Vitaflo-250 (carbathiin), UBI-2383 (triadimenol), Daconil (chlorothalonil), CGA-173506 (fludioxonil), and CGA-169374 (difeno- conazole) were considered nontoxic to C. destmtan (EC5O 1.29->600, EC95>500). Relations between proportional inhibition of growth and concentration of fungicide were linear on arithmetic plots (Benlate, UBI-2643, UBI-2565, Vitaflo-280) or logarithmic plots (all other fungicides). Based on toxicity in vitro and formulation, it is recommended that Benlate, Orbit, and ASC-66835 be tested as soil drenches, and Benlate, Thiram, UBI-2584, and Crown be tested as seed treatments for controlling disappearing root rot.

  • PDF

Effect of Drenching Soil with Benomyl, Propiconazole and Fluazinam on Incidence of Disappearing Root Rot of Ginseng

  • A.Monique Ziezold;Robert Hall;Richard D.Reeleder;John T.A.Proctor
    • Journal of Ginseng Research
    • /
    • 제22권4호
    • /
    • pp.237-243
    • /
    • 1998
  • Three fungicides, Orbit (propiconazole), Benlate (benomyl) and ASC-66835 (fluazinam), were tested as soil drenches to control disappearing root rot (DRR) of ginseng (Panax quinquefolius) in gardens artificially infested with Cylindrocarpon dsstrutans. The incidence of DRR was low (0∼3.5%) in uninfected plots and significantly higher in infested plots (2.6∼19.9%). Significant reductions in the incidence of DRR were observed in 1-year-old and 2-year-old gardens that were treated and assessed for disease in the same year Significant control was not obtained in 3-year-old gardens treated and as secede in the same year, or in 1-year-old or 2-year-old gardens assessed in the year following information. Disease incidence was significantly reduced by 49-77% by low and high rates of benomyl (45 and 1,250 mg a.1./L) and propiconazole (10 and 40 mg a.i./L) and by fluazinam at 150 mg a.i./L. These fungicides seem to be worthy of further investigation as soil drenches to control DRR of ginseng.

  • PDF

Seed and Root Rots of Ginseng (Panax quinquefolius L) Caused by Cylindrocarpon destructans and Fusarium spp.

  • Reeleder, R.D.;Roy, R.;Capell, B.
    • Journal of Ginseng Research
    • /
    • 제26권3호
    • /
    • pp.151-158
    • /
    • 2002
  • Ginseng (Panax quinquefolius L.) has become one of the most valuable herb crops grown in North America. However, traditional cropping practices are favourable to disease and significant losses due to root disease are common, despite frequent use of fungicides. Seedlots are often contaminated with pathogens, however, little is known about the causes of seed decay and the role of seed pathogens as incitants of root rots. It was shown that both Fusarium spp. and Cylindrocarpon destructans were able to rot seeds and that C. destructans was more virulent than Fusarium spp. on seedling roots. A modified rose bengal agar MRBA) medium (1 g KH$_2$PO$_4$; 0.5 g MgSO$_4$; 50 mg rose bengal; 10 g dextrose; 5 g Bacto peptone; 15 g Bacto agar; 30 mg streptomycin sulfate; 250 mg ampicillin; 10 mg rifampicin; 500mg pentachloronitrobenzene; 500 mg dicloran; and 1 L distilled water) was superior to potato dextrose agar in detecting C. destuctans in diseased roots. Isolation of C. destructans from diseased seedlings arising from seeds sown in replant soil supported the hypothesis that this pathogen is a cause of ginseng replant failure in North America.

인삼 뿌리썩음병 발병에 미치는 환경 요인 (Environmental Factors on the Development of Root Rot on Ginseng Caused by Cylindrocarpon destructans)

  • 이중섭;한경숙;이성찬;소재우;김두욱
    • 식물병연구
    • /
    • 제20권2호
    • /
    • pp.87-94
    • /
    • 2014
  • 인삼 재배지에서 가장 큰 피해를 나타내고 있는 뿌리썩음병원균은 Cylindrocarpon destructans로 연작장해의 원인으로 작용하고 있다. 2011과 2012년에 걸쳐 인삼 뿌리썩음병 발병포장으로부터 뿌리를 수집하여 병징 구분 후 57종의 C. destructans를 분리하였다. 분리한 뿌리썩음병원균중에서 34균주(61%)는 병원성이 낮았으며, 21균주(37%)는 무상처 접종에서도 병반을 형성하여 강한 병원성을 나타내었다. 또한 이들 분리균들을 PDA 배지에서 15일 배양한 결과 최적의 생장온도는 $20^{\circ}C$였으며, $35^{\circ}C$에서는 병원성에 관계없이 모두 생장하지 못하였다. 병원성에 따라 균총의 색과 균사의 생장정도에 차이를 나타내었다. 강한 병원성 균주는짙은 갈색을 나타낸 반면 병원성이 약한 균주들은 베이지색 또는 옅은 갈색을 나타내었다. pH 변화에 따른 균사 생장에 미치는 효과 조사를 위해 수경 재배한 결과 pH 7.0에서 보다 pH 5.0에서 균사생장이 양호하였다. 뿌리에서의 상처는 pH 변화와 관계없이 발병도를 더욱 증가시켰다. 인위적으로 조성한 발병 토양에 1-4년생 인삼뿌리를 이식하여 재배한 결과 2년생 뿌리에서 가장 감수성이었으며, 발병률도 79.5%로 가장 높았다. 뿌리썩음병 발병정도는 토양 내 접종 병원균의 밀도에 따라 영향을 받는 것으로 나타났으며, 병원균 접종농도 $3.5{\times}10^2cfu/g$ 처리구 보다 $2.0{\times}10^3cfu/g$ 처리구에서 높았다.