• Title/Summary/Keyword: Directions of the Cracks

Search Result 80, Processing Time 0.024 seconds

Effect of process parameters on propagation of edge crack in the cold rolling (냉간 박판압연공정에서 공정변수가 엣지 크랙 성장에 미치는 영향)

  • Cui, Xiang Zi;Lee, S.H.;Lee, S.J.;Lee, J.B.;KIm, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.405-408
    • /
    • 2009
  • Edge cracks in cold rolling always influence to the quality of productions, while the "V" shaped cracks were propagated by passing the roll gap. We set up the sizes and shapes of initial cracks in simulation according to the references from real productions. Different to in hot rolling, the cracks in cold rolling couldn't be reduced from propagation automatically after generated, even if these could be reduced by changing the process parameters. In this paper, we described the affections of process parameters on the propagation of edge cracks, such as reduction ratio and tension. We predicted that the dependence of the cracks propagations of changing of process conditions and expected to gain the smaller edge cracks. By raising the reduction ratio, the cracks were propagated increasingly in both transverse and rolling directions. And as tension raise, the cracks became propagated in both directions in which transverse direction was less effectively.

  • PDF

A Study on the Recognition of Concrete Cracks using Fuzzy Single Layer Perceptron

  • Park, Hyun-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.204-206
    • /
    • 2008
  • In this paper, we proposed the recognition method that automatically extracts cracks from a surface image acquired by a digital camera and recognizes the directions (horizontal, vertical, -45 degree, and 45 degree) of cracks using the fuzzy single layer perceptron. We compensate an effect of light on a concrete surface image by applying the closing operation, which is one of the morphological techniques, extract the edges of cracks by Sobel masking, and binarize the image by applying the iterated binarization technique. Two times of noise reduction are applied to the binary image for effective noise elimination. After the specific regions of cracks are automatically extracted from the preprocessed image by applying Glassfire labeling algorithm to the extracted crack image, the cracks of the specific region are enlarged or reduced to $30{\times}30$ pixels and then used as input patterns to the fuzzy single layer perceptron. The experiments using concrete crack images showed that the cracks in the concrete crack images were effectively extracted and the fuzzy single layer perceptron was effective in the recognition of the extracted cracks directions.

Extraction and Recognition of Concrete Slab Surface Cracks using ART2-based RBF Network (ART2 기반 RBF 네트워크를 이용한 콘크리트 슬래브 표면의 균열 추출 및 인식)

  • Kim, Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.8
    • /
    • pp.1068-1077
    • /
    • 2007
  • This paper proposes a method that extracts characteristics of cracks such as length, thickness and direction from a concrete slab surface image with image processing techniques. These techniques extract the cracks from the concrete surface image in variable conditions including bad image conditions) using the ART2-based RBF network to recognize the dominant directions -45 degree, 45 degree, horizontal and vertical) of the extracted cracks from the automatically calculated specifications like the lengths, directions and widths of the cracks. Our proposed extraction algorithms and analysis of the concrete cracks used a Robert operation to emphasize the cracks, and a Multiple operation to increase the difference in brightness between the cracks and background. After these treatments, the cracks can be extracted from the image by using an iterated binarization technique. Noise reduction techniques are used three separate times on this binarized image, and the specifications of the cracks are extracted form this noiseless image. The dominant directions can be recognized by using the ART2-based RBF network. In this method, the ART2 is used between the input layer and the middle layer to learn, and the Delta learning method is used between the middle layer and the output layer. The experiments using real concrete images showed that the cracks were effectively extracted, and the Proposed ART2-based RBF network effectively recognized the directions of the extracted cracks.

  • PDF

Bounary Element Analysis of Thermal Stress Intensity Factors for Cusp Cracks (커스프 균열에 대한 열응력세기 계수의 경계요소해석)

  • 이강용;조윤호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.119-129
    • /
    • 1990
  • In case that the body with a cusp crack is under uniform heat flow, thermal stress intensity factors are calculated by using boundary element method with linearized body force term. The crack surface is under insulated or fixed temperature condition and the types of crack are symmetric lip and airfoil cusps. Numerical values of thermal stress intensity factors for a Griffith crack and cusp cracks in infinite bodies are proved to be in good agreement within .+-.5% when compared with the previous numerical and exact solutions, respectively. The thermal stress intensity factors for symmetric lip and airfoil cusp cracks in finite bodies are calculated about various effective crack lengths, configuration parameters, and heat flow directions. With the same crack surface thermal boundary conditions, heat flow directions and crack lengths, there are no appreciable differences in variations of thermal stress intensity factors between symmetric lip and airfoil cusp cracks. The signs of thermal stress intensity factors for each cusp crack are changed with each crack surface thermal boundary condition.

Recognition of Concrete Surface Cracks Using Enhanced Max-Min Neural Networks (개선된 Max-Min 신경망을 이용한 콘크리트 균열 인식)

  • Kim, Kwang-Baek;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.77-82
    • /
    • 2007
  • In this paper, we proposed the image processing techniques for extracting the cracks in a concrete surface crack image and the enhanced Max-Min neural network for recognizing the directions of the extracted cracks. The image processing techniques used are the closing operation or morphological techniques, the Sobel masking for extracting for edges of the cracks, and the iterated binarization for acquiring the binarized image from the crack image. The cracks are extracted from the concrete surface image after applying two times of noise reduction to the binarized image. We proposed the method for automatically recognizing the directions of the cracks with the enhanced Max-Min neural network. Also, we propose an enhanced Max-Min neural network by auto-tuning of learning rate using delta-bar-delta algorithm. The experiments using real concrete crack images showed that the cracks in the concrete crack images were effectively extracted and the enhanced Max-Min neural network was effective in the recognition of direction of the extracted cracks.

  • PDF

The Mechanics of Crack Formation Induced by Sliding on a Brittle Material (슬라이딩에 의해 취성재료에 발생하는 균열 성장에 관한 연구)

  • Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.36-44
    • /
    • 1995
  • When sliding a hard cylinder along the surface of glass, periodic surface cracks appear on the flat surface due to tensile stresses induced by the slider. These cracks propagate into the substrate and will affect the fracture properties of a body. Crack spacings and the directions of crack propagation into glass were calculated numerically by applying the finite element method and linear elastic fracture mechanics. The calculated crack spacings were in the range of the experimental results. Stress intensity factors and crack extension angles depended on the radius of slider and the load, and from these two factors the possible directions of crack propagation were calculated. The calculated propagation directions were in good agreement with real crack propagation.

  • PDF

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

A study on the Surface Cracks in the West Stone Pagoda of Gameunsa Temple Site, Gyeongju, Korea: Examples from the second story stone body and the third story capstone (경주 감은사지 삼층석탑(서탑)에 발달한 표면균열에 대한 연구: 2층 탑신과 3층 옥개석의 사례)

  • Jwa, Yong-Joo;Kim, Jae-Hwan;Park, Sung-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.238-244
    • /
    • 2008
  • The west stone pagoda of Gameunsa temple site(National Treasure No. 112) has been seriously damaged by surface weathering, and conservation treatment is needed. In the second story body stone, vertical cracks developed parallel to the main compressional axis. The vertical cracks seem to grow much more with the compression. Chemical and biological weathering along the vertical cracks could have enhanced the crack growth. In the third story capstone, the surface cracks strike toward NE and NW directions, which are intersecting each other. In the eastern and southern parts of the third story capstone, lots of vertical cracks develop along the lines from the axial center to outer rim, whereas horizontal cracks are easily observed at the outer rim of the capstone. On the other hand, a few horizontal cracks develop in the western and northern parts of the third story capstone. This fact indicates that the compression along the vertical axis is not uniform in direction. The west stone pagoda leans toward the east and the south, so it is considered that compression by deviatoric stress prevailed at these directions.

LASER WELDING OF SINGLE CRYSTAL NICKEL BASE SUPERALLOY CMSX-4

  • Yanagawa, Hiroto;Nakamura, Daisuke;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.193-198
    • /
    • 2002
  • In 1his paper, applicability of laser welding to joining process of single crystal nickel base superalloy turbine blades was investigated. Because heat input of laser welding is more precisely controlled 1han TIG welding, it is possible to optimize solidification microstructure of the welds. Since in single crystal nickel base superalloy the crystal orientation have a significant effect on the strength, it is important to control the solidification microstructure in the fusion zone. A single crystal nickel base supera1loy, CMSX-4, plates were bead-on welded and butt welded using a $CO_2$ laser. The effects of microstructure and crystal orientation on properties of the weld joints were investigated. In bead-on weldling, welding directions were deviated from the base metal [100] direction by 0, 5, 15 and 30 degrees. The welds with deviation angles of 15 and 30 degrees showed fusion zone transverse cracks. As the deviation angles became larger, the fusion zone had more cracking. In the cross section microstructure, the fusion zone grains in 0 and 5 degrees welds grew epitaxially from the base metal spins except for the bead neck regions. The grains in the bead neck regions contained stray crystals. As deviation angles increased, number of the stray crystals increased. In butt welding, the declinations of the crystal orientation of the two base metals varied 0, 5 and 10 degrees. All beads had no cracks. In the 5 degrees bead, the cross section and surface microstructures showed that the fusion zone grains grew epitaxially from the base metal grains. However, the 10 degrees bead, the bead cross section and surface contained the stray crystals in the center of the welds. Orientations of the stray crystals accorded with the heat flow directions in the weld pool. When the welding direction was deviated from the base metal [100] direction, cracks appeared in the area including the stray crystals. The cracks developed along the grain boundaries of the stray crystals with high angles in the final solidification regions at the center of the welds. The fracture surfaces were covered with liquid film. The cracks, therefore, found to be solidification cracks due to the presence of low melting eutectic. As the results, in both bead-on welding and butt welding the deviation angles should be control within 5 degrees for preventing the fusion zone cracks. To investigate the mechanical properties of the weld joints, high temperature tensile tests for bead-on welds with deviation angles of 0 and 5 degrees and the butt welds with dec1ination angles of 0, 5 and 10 degrees were conducted at 1123K. The the tensile strength of all weld joints were more 1han 800MPa that is almost 80% of the tensile strength of the base metal. The strength of the laser weld joints were more than twice that of tue TIG weld joints with a filler metal of Inconel 625. The results reveals 1hat laser welding is more effective joining process for single crystal nickelbase superalloy turbine blades 1han TIG welding.

  • PDF

Microstructure and Mechanical Property Changes of Unidirectional and Plain Woven CF/Mg Composite Laminates after Corrosion (일방향 및 평직 CF/Mg 복합재 적층판의 부식에 따른 미세조직 및 기계적 특성 변화)

  • Yim, Shi On;Lee, Jung Moo;Lee, Sang Kwan;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.697-702
    • /
    • 2012
  • In this study, unidirectional and plain woven carbon fiber reinforced magnesium matrix composite laminates were fabricated by the liquid pressing infiltration process, and evolutions of the microstructure and compressive strength of the composite laminates under corrosion were investigated by static immersion tests. In the case of the unidirectional composite laminate, the main microstructural damage during immersion appeared as a form of corrosion induced cracks, which were formed at both CF/Mg interfaces and the interfaces between layers. On the otherhand, wrap/fill interface cracks were mainly formed in the plain woven composite laminate, without any cracks at the CF/Mg interface. The formation of these cracks was considered to be associated with internal thermal residual stress, which was generated during cooling after the fabrication process of these materials. As a consequence of the corrosion induced cracks, the thickness of both laminates increased in directions vertical to the fibers with increasing immersion time. With increasing immersion time, the compressive strengths of both composite laminates also decreased continuously. It was found that the plain woven composite laminates have superior corrosion resistance and stability under a corrosive condition than unidirectional laminates.