• Title/Summary/Keyword: Directional microphone

Search Result 22, Processing Time 0.015 seconds

Sound Source Localization Method Based on Deep Neural Network (깊은 신경망 기반 음원 추적 기법)

  • Park, Hee-Mun;Jung, Jong-Dae
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1360-1365
    • /
    • 2019
  • In this paper, we describe a sound source localization(SSL) system which can be applied to mobile robot and automatic control systems. Usually the SSL method finds the Interaural Time Difference, the Interaural Level Difference, and uses the geometrical principle of microphone array. But here we proposed another approach based on the deep neural network to obtain the horizontal directional angle(azimuth) of the sound source. We pick up the sound source signals from the two microphones attached symmetrically on both sides of the robot to imitate the human ears. Here, we use difference of spectral distributions of sounds obtained from two microphones to train the network. We train the network with the data obtained at the multiples of 10 degrees and test with several data obtained at the random degrees. The result shows quite promising validity of our approach.

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm (음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계)

  • Ghil, Min-Sik;Kwak, Dong-Kurl
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.53-59
    • /
    • 2020
  • This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.