• Title/Summary/Keyword: Directional feature

Search Result 164, Processing Time 0.029 seconds

Feature Extraction of Handwritten Numerals using Projection Runlength (Projection Runlength를 이용한 필기체 숫자의 특징추출)

  • Park, Joong-Jo;Jung, Soon-Won;Park, Young-Hwan;Kim, Kyoung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.818-823
    • /
    • 2008
  • In this paper, we propose a feature extraction method which extracts directional features of handwritten numerals by using the projection runlength. Our directional featrures are obtained from four directional images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral shape respectively. A conventional method which extracts directional features by using Kirsch masks generates edge-shaped double line directional images for four directions, whereas our method uses the projections and their runlengths for four directions to produces single line directional images for four directions. To obtain the directional projections for four directions from a numeral image, some preprocessing steps such as thinning and dilation are required, but the shapes of resultant directional lines are more similar to the numeral lines of input numerals. Four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. By using a hybrid feature which is made by combining our feature with the conventional features of a mesh features, a kirsch directional feature and a concavity feature, higher recognition rates of the handwrittern numerals can be obtained. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the handwritten numeral database of Concordia University, we have achieved a recognition rate of 97.85%.

Offline Handwritten Numeral Recognition Using Multiple Features and SVM classifier

  • Kim, Gab-Soon;Park, Joong-Jo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.526-534
    • /
    • 2015
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by local shrinking and expanding operations, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where the concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our scheme is tested by recognition experiments on the handwritten numeral database CENPARMI, where SVM classifier with RBF kernel is used. The experimental results show the usefulness of our scheme and recognition rate of 99.10% is achieved.

A Study on the Feature Extraction for High Speed Character Recognition -By Using Interative Extraction and Hierarchical Formation of Directional Information- (고속 문자 인식을 위한 특징량 추출에 관한 연구 - 방향정보의 반복적 추출과 특징량의 계층성을 이용하여 -)

  • 강선미;이기용;양윤모;양윤모;김덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.102-110
    • /
    • 1992
  • In this paper, a new method of character recognition is proposed. It uses density information, in addition to positional and directional information generally used, to recognize a character. Four directional feature primitives are extracted from the thinning templates on the observation that the output of the templates have directional property in general. A simple and fast feature extraction scheme is possible. Features are organized from recursive nonary tree(N-tree) that corresponds to normalized character area. Each node of the N-tree has four directional features that are sum of the features of it's nine sub-nodes. Every feature primitive from the templates are added to the corresponding leaf and then summed to the upper nodes successively. Recognition can be accomplished by using appropriate feature level of N-tree. Also, effectiveness of each node's feature vector was tested by experiment. A method to implement the proposed feature vector organization algorithm into hardware is proposed as well. The third generation node, which is 4$\times$4, is used as a unit processing element to extract features, and it was implemented in hardware. As a result, we could observe that it is possible to extract feature vector for real-time processing.

  • PDF

Handwritten Numeral Recognition using Composite Features and SVM classifier (복합특징과 SVM 분류기를 이용한 필기체 숫자인식)

  • Park, Joong-Jo;Kim, Tae-Woong;Kim, Kyoung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2761-2768
    • /
    • 2010
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by projection runlength, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our feature sets was tested by recognition experiments on the handwritten numeral database CENPARMI, where we used SVM with RBF kernel as a classifier. The experimental results showed that each combination of two or three features gave a better performance than a single feature. This means that each single feature works with a different discriminating power and cooperates with other features to enhance the recognition accuracy. By using the composite feature of the three features, we achieved a recognition rate of 98.90%.

Learning Directional LBP Features and Discriminative Feature Regions for Facial Expression Recognition (얼굴 표정 인식을 위한 방향성 LBP 특징과 분별 영역 학습)

  • Kang, Hyunwoo;Lim, Kil-Taek;Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.748-757
    • /
    • 2017
  • In order to recognize the facial expressions, good features that can express the facial expressions are essential. It is also essential to find the characteristic areas where facial expressions appear discriminatively. In this study, we propose a directional LBP feature for facial expression recognition and a method of finding directional LBP operation and feature region for facial expression classification. The proposed directional LBP features to characterize facial fine micro-patterns are defined by LBP operation factors (direction and size of operation mask) and feature regions through AdaBoost learning. The facial expression classifier is implemented as a SVM classifier based on learned discriminant region and directional LBP operation factors. In order to verify the validity of the proposed method, facial expression recognition performance was measured in terms of accuracy, sensitivity, and specificity. Experimental results show that the proposed directional LBP and its learning method are useful for facial expression recognition.

Image Retrieval Using Directional Features (방향성 특징을 이용한 이미지 검색)

  • Jung, Ho-Young;Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.207-211
    • /
    • 2000
  • For efficient massive image retrieval, an image retrieval requires that several important objectives are satisfied, namely: automated extraction of features, efficient indexing and effective retrieval. In this work, we present a technique for extracting the 4-dimension directional feature. By directional detail, we imply strong directional activity in the horizontal, vertical and diagonal direction present in region of the image texture. This directional information also present smoothness of region. The 4-dimension feature is only indexed in the 4-D space so that complex high-dimensional indexing can be avoided.

  • PDF

Directional Feature Extraction of Handwritten Numerals using Local min/max Operations (Local min/max 연산을 이용한 필기체 숫자의 방향특징 추출)

  • Jung, Soon-Won;Park, Joong-Jo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, we propose a directional feature extraction method for off-line handwritten numerals by using the morphological operations. Direction features are obtained from four directional line images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral lines. Conventional method for extracting directional features uses Kirsch masks which generate edge-shaped double line images for each direction, whereas our method uses directional erosion operations and generate single line images for each direction. To apply these directional erosion operations to the numeral image, preprocessing steps such as thinning and dilation are required, but resultant directional lines are more similar to numeral lines themselves. Our four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. For obtaining the higher recognition rates of the handwrittern numerals, we use the multiple feature which is comprised of our proposed feature and the conventional features of a kirsch directional feature and a concavity feature. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the CENPARMI numeral database of Concordia University, we have achieved a recognition rate of 98.35%.

  • PDF

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

A Study on Local Micro Pattern for Facial Expression Recognition (얼굴 표정 인식을 위한 지역 미세 패턴 기술에 관한 연구)

  • Jung, Woong Kyung;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.14 no.5
    • /
    • pp.17-24
    • /
    • 2014
  • This study proposed LDP (Local Directional Pattern) as a new local micro pattern for facial expression recognition to solve noise sensitive problem of LBP (Local Binary Pattern). The proposed method extracts 8-directional components using $m{\times}m$ mask to solve LBP's problem and choose biggest k components, each chosen component marked with 1 as a bit, otherwise 0. Finally, generates a pattern code with bit sequence as 8-directional components. The result shows better performance of rotation and noise adaptation. Also, a new local facial feature can be developed to present both PFF (permanent Facial Feature) and TFF (Transient Facial Feature) based on the proposed method.

Content-based image retrieval using adaptive representative color histogram and directional pattern histogram (적응적 대표 컬러 히스토그램과 방향성 패턴 히스토그램을 이용한 내용 기반 영상 검색)

  • Kim Tae-Su;Kim Seung-Jin;Lee Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.119-126
    • /
    • 2005
  • We propose a new content-based image retrieval using a representative color histogram and directional pattern histogram that is adaptive to the classification characteristics of the image blocks. In the proposed method the color and pattern feature vectors are extracted according to the characteristics o: the block classification after dividing the image into blocks with a fixed size. First, the divided blocks are classified as either luminance or color blocks depending on the saturation of the block. Thereafter, the color feature vectors are extracted by calculating histograms of the block average luminance co-occurrence for the luminance block and the block average colors for the color blocks. In addition, block directional pattern feature vectors are extracted by calculating histograms after performing the directional gradient classification of the luminance. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.