• Title/Summary/Keyword: Directional element

Search Result 225, Processing Time 0.02 seconds

Free vibration analysis of Bi-Directional Functionally Graded Beams using a simple and efficient finite element model

  • Zakaria Belabed;Abdeldjebbar Tounsi;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed Bourada;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.233-252
    • /
    • 2024
  • This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

Acoustic Characteristics Analysis of Cylindrical Array for the Directional and Omni-directional mode Using the Boundary Element Method (경계요소법을 이용한 원통형 배열센서의 지향성/무지향성 모드에 대한 음향특성해석)

  • Lee, Jung-Min;Seo, Hee-Seon;Cho, Yo-Han;Baek, Kwang-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.922-927
    • /
    • 2009
  • The transducers used in active sonar on surface ships are packed in a specific geometry in the array drum in order to meet the requirements such as the source level, directional beam pattern, etc. This paper describes the acoustic characteristics of the cylindrical array which is based on a 64 vertical staves arrangement, each stave composed 5 independent transducers. Firstly, the single transducer on the rigid baffle in the water is analyzed with the Finite Element Method. From the result of the FE analysis nodal velocities on the radiation surface is calculated and used with the boundary conditions of the transducers mounted on the array drum. Then the acoustic pressure is calculated in the field points using the Boundary Element Method and the other acoustic informations, the source level, beam pattern, near field and far-field distance, were acquired.

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

Lumped Element MMIC Direction Coupler Based on Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 MMIC 집중 소자형 방향성 결합기)

  • Kang, Myung-Soo;Joung, Myung-Sup;Park, Jun-Seok;Lim, Jae-Bong;Cho, Hong-Goo;Lee, Jae-Hak;Kim, Heong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2028-2030
    • /
    • 2004
  • In this paper, a lumped equivalent circuit for a conventional parallel directional coupler is proposed. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3dB and 4.7dB lumped element directional couplers at the center frequency of 3.4GHz and 5.6GHz. A chip type directional coupler has been designed to fabricate with MMIC(Monolitic Microwave integrated circuit) process. Excellent agreements between simulations and measurements on the designed directional couplers show the validity of this paper.

  • PDF

Application of Directional Over Current Protection Schemes Considering the Fault Characteristics in the Distribution System with Dispersed Generation (분산전원이 연계된 배전계통의 고장특성을 고려한 방향성 보호계전 방식 적용 연구)

  • Jung, Won-Wook;Lee, Hak-Ju;Kwon, Seong-Chul;Chae, Woo-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.97-107
    • /
    • 2010
  • Penetration of distributed generator(DG) to power distribution system can cause malfunction of existing protection schemes. Because grid interconnected DG can contribute fault currents and make bidirectional current flows on the system, fault contributions from DG can cause an interference of protection relay operation. Therefore, over current protection device of the distribution system with DGs need directional protection schemes. In this paper, improved directional protection algorithms are proposed for the distribution system with DG considering their fault characteristics. And than, these directional protection algorithms are tested and validated in various fault conditions. From the simulation results, it can be seen that the proposed directional protection algorithms are practically efficient for the radial distribution system with DG.

THREE-DIMENSIONAL FINI6E ELEMENT ANALYSIS OF THE ENDOSSEOUS IMPLANT DESIGNS (삼차원 유한요소 해석에 의한 골내 임프란트의 구조에 관한 연구)

  • Hyun, Young-Keun;Kwon, Jong-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.181-210
    • /
    • 1997
  • The stress distribution generated in the surrounding bone was calculated and compared for various geometry of the dental implants by means of the finite element methods. The models were designed to represent the screw type endosseous implants(varing the size, shape, direction of the screw thread and the angle of the body) with supporting bone and the cylinder type endosseous implants(varing the lower portion-Round type, tapered type) with supporting bone. Static mean bite forces were applied 100N vertically and 25N horizontally on the center of the implant and three dimensional finite analysis was undertaken using software ANSYS 5.1 Version. The result demonstrated that different implant shape leads to significant variations in stress distribution in the bone. In the case of variation of the screw size, direction and shape the implant model with normally directional and triangular screw implied lower stress than with upper directional or lower directional and quadrangular screw but among models a different screw size, within a variation of 0.2mm there was no meaningful difference in maximum stress. In the case of variation of angle of body the straight implied lower stress than the tapered. As a result of analysis of cylinder type, the implants with larger radius of curvature of the round form and larger diameter of the tapered form implied lower stress.

  • PDF

An Analysis Method of Lumped-element Directional Coupler for CATV by Even- and Odd-Mode Theory (CATV용 집중정수형 방향성결합기의 우기모드 해석법)

  • Ha, Do-Hoon;Kim, Dong-Il
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 2001
  • A new analysis method of lumped-element directional coupler for CATV was proposed, where the even-and odd-mode theory for a symmetrical coupled-line directional coupler was applied to a transformer-type directional coupler. In addition, the tap-offs were analyzed by the proposed theory, which are widely used in CATV (Cable Television) systems. By comparing the calculated results for S-parameters results to the measured ones using only the even-and odd-mode reflection coefficients, the validity of the proposed analysis method was confirmed. Then, it was clearly shown that the tap-off has very wide bandwidth from 5 MHz to 4,000 MHz by adopting the proposed theory.

  • PDF

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

A Directional Relay Algorithm Using Positive-Sequence Superimposed Quantity for Transmission Line Protection (정상 성분 변화량을 이용한 송전선로 보호용 방향 계전 알고리즘)

  • 이명수;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.226-233
    • /
    • 2003
  • Directional elements are fundamental to protection scheme security and selectivity, performing such critical tasks as supervising distance elements and controlling overcurrent elements. But, conventional operating principles for directional detection based on negative or zero sequence quantify do not satisfy the requirements for improved sensitivity and fast operation under any fault conditions. In this paper, new algorithm for directional elements is proposed. The proposed algorithm use the positive-sequence superimposed voltages and currents in order to be used in all fault conditions. Also, because this algorithm uses a voltage compensation method. it can be well operated under strong source conditions.