• Title/Summary/Keyword: Directional element

Search Result 225, Processing Time 0.032 seconds

Content Recommendation Techniques for Personalized Software Education (개인화된 소프트웨어 교육을 위한 콘텐츠 추천 기법)

  • Kim, Wan-Seop
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.95-104
    • /
    • 2019
  • Recently, software education has been emphasized as a key element of the fourth industrial revolution. Many universities are strengthening the software education for all students according to the needs of the times. The use of online content is an effective way to introduce SW education for all students. However, the provision of uniform online contents has limitations in that it does not consider individual characteristics(major, sw interest, comprehension, interests, etc.) of students. In this study, we propose a recommendation method that utilizes the directional similarity between contents in the boolean view history data environment. We propose a new item-based recommendation formula that uses the confidence value of association rule analysis as the similarity level and apply it to the data of domestic paid contents site. Experimental results show that the recommendation accuracy is improved than when using the traditional collaborative recommendation using cosine or jaccard for similarity measurements.

Development of Insert Metals for the Transient Liquid Phase Bonding in the Directional Solidified Ni Base Super Alloy GTD 111 (일방향응고 니켈기 초내열합금 GTD111에서 천이 액상확산 접합용 삽입금속의 개발에 관한 연구)

  • Lee, Bong-Keun;Oh, In-Seok;Kim, Gil-Moo;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.242-247
    • /
    • 2009
  • On the Transient Liquid Phase Bonding (TLPB) phenomenon with the MBF-50 insert metal at narrow gap (under 100), it takes long time for the bonding and the homogenizing. Typically, isothermal solidification is controlled by the diffusion of depressed element of B and Si. However, the amount of B and Si in the MBF-50 filler metal is large. This is reason of the long bonding time. Also, the MBF-50 filler metal did not contained Al and Ti which are ${\gamma}^{\prime}$ phases former. This is reason of the long homogenizing time. From the bonding phenomenon with the MBF-50 insert metal, we search main factors on the bonding mechanism and select several insert-metals for using the wide-gap TLPB. New insert-metals contained Al and Ti which are ${\gamma}^{\prime}$ phases former and decrease the B then the MBF-50. When the new insert-metal was used on the TLPB, the bonding time was decreased about 1/10 times and homogenizing heat treatment was no needed. In spite of the without homogenizing, the volume fraction of ${\gamma}^{\prime}$ phases in the boned interlayer was equal to homogenizing heat treated specimen which was TLPB with the MBF-50. Finally, the new insert metal named WG1 for the wide-gap TLPB is more efficient then the MBF-50 filler metal without decreasing the bonding characteristic.

Semen Analysis and Improvement of Artificial Seminal Plasma According to Sperm Activity in Eel Anguilla japonica (뱀장어(Anguilla japonica) 정자 활성에 따른 정액 분석 및 인공정장액 개선)

  • Han-Sik Kim;Shin-Kwon Kim;Bae-Ik Lee;Yongwoon Ryu;Min-Gyu Shin;Su-Jin Park;Youn-Hee Choi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.401-410
    • /
    • 2023
  • This study examined the characteristics of eel Anguilla japonica sperm using the CASA (computer-assisted sperm analysis) system and attempted to provide the composition for artificial seminal plasma by regulating of inorganic elements. Sperm samples were first divided into four groups based on motility and progressive motility: (A) 0-10%, (B) 10-40%, (C) 40-70%, and (D) 70-100%. For observing sperm velocity variations, VCL, which is curve motion velocity, showed the highest values in all groups. The directional factor, beat cross frequency, was lower in higher activity groups, showing an opposite correlation with sperm activity. The head sizes of spermatozoa in higher activity groups were significantly larger than those in lower activity groups. The Na+ and K+ ions were important in the inorganic composition of seminal plasma in this species. Furthermore, regulating the composition in artificial seminal plasma improved the formula compared to the existing element, exhibiting 120 mM Na and 30 mM K when the sperm was conserved for a long time and 120 mM NA and 40 mM K when the sperm was conserved for a short time.

Compressive and failure behaviour of composite egg-box panel using non-orthogonal constitutive model (비 직교 물성 모델을 이용한 복합재료 계란판의 압축거동 및 파손)

  • Hahn, Young-Won;Chang, Seung-Hwan;Ryu, Yong-Mun;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.20-26
    • /
    • 2009
  • In the current study, thermoforming and compression analysis were carried out for the woven composite egg-box panel with the non-orthogonal constitutive material model, which is proposed by Xue et al. The material model is implemented in commercial engineering software, LS-DYNA, with a user subroutine. Directional properties in non-orthogonal coordinates are determinedusing the deformation gradient tensor and the material modulus matrix in local coordinate is updated at eaeh corresponding time step. After the implemented non-orthogonal constitutive model is verified by the bias extension test, the egg-box panel simulations are performed. The egg-box panel simulations are divided into two categories: thermoforming (draping) and crushing. The finite element model for crushing analysiscan be obtained using the displacement result of thermoforming process.

The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall (철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향)

  • Shin, Hye Min;Park, Jun Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

Design of a Internal Loop Antenna for Multi-band Mobile Handset Applications (다중 대역 이동 통신 단말기용 내장형 루프 안테나 설계)

  • Lee Young-Joong;Lee Jin-Sung;Jung Byungwoon;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.917-925
    • /
    • 2005
  • In this paper, the quad-band antenna for mobile handsets is proposed and developed. The operating frequency bands include GSM(880 MHz${\~}$960 MHz), GPS(1,575 MHz$\pm$10 MHz), DCS(1,710 MHz${\~}$l,880MHz), and PCS(1,850 MHz${\~}$l,990 MHz). The proposed antenna consists of a feed line, a shorting post, and a radiating element of the feed loop. The multi-band operation is achieved by using the fundamental and higher resonant modes of the radiating element. Based on analysis of the current distribution on the radiator, the resonant frequency of each mode can be adjusted by adding the different sizes of slots on the radiator. The radiator of the feed loop is designed to be symmetrical so that the energy is symmetrically distributed on the radiator, which results in omni-directional radiation pattern. The ground plane under the radiator is removed in order to improve the bandwidth. The measured impedance bandwidths are $10.1\%$ in GSM band(VSWR<2.5), $26.8\%$ in GPS band, and DCS/US-PCS bands(VSWR<2.5), respectively. The maximum gains on the H-plane of the fabricated antenna are measured about -0.37 dBi${\~}$2.55 dBi for all operating frequency bands.

Estimation of Mechanical Representative Elementary Volume and Deformability for Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 역학적 REV 및 변형특성 추정사례)

  • Um, Jeong-Gi;Ryu, Seongjin
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.59-72
    • /
    • 2022
  • This study employed a 3-D numerical analysis based on the distinct element method to estimate the strength and deformability of a Cretaceous biotite granitic rock mass at Gijang, Busan, Korea. A workflow was proposed to evaluate the scale effect and the representative elementary volume (REV) of mechanical properties for fractured rock masses. Directional strength and deformability parameters such as block strength, deformation modulus, shear modulus, and bulk modulus were estimated for a discrete fracture network (DFN) in a cubic block the size of the REV. The size of the mechanical REV for fractured rock masses in the study area was determined to be a 15 m cube. The mean block strength and mean deformation modulus of the DFN cube block were found to be 52.8% and 57.7% of the intact rock's strength and Young's modulus, respectively. A constitutive model was derived for the study area that describes the linear-elastic and orthotropic mechanical behavior of the rock mass. The model is expected to help evaluate the stability of tunnels and underground spaces through equivalent continuum analysis.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

Thickness Optimization for Spar Cap of Composite Tidal Current Turbine Blade using SQP Method (SQP법을 사용한 복합재 조류력 발전용 블레이드의 스파 캡에 대한 두께 최적화)

  • Cha, Myung-Chan;Kim, Sang-Woo;Jeong, Min-Soo;Lee, In;Yoo, Seung-Jae;Park, Cheon-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, the thickness optimization for uni-directional (UD) glass fiber reinforced polymer (GFRP) laminates of the spar cap of composite tidal blades was performed under the tip deflection constrains. The spar cap was composed of GFRP composites and carbon fiber reinforced polymer (CFRP) composites. The stress distributions in the blade as well as its material costs for the optimized results were additionally investigated. The optimized thickness was obtained by interacting a sequential quadratic programming (SQP) algorithm and an ABAQUS software to calculate an objective function. It was confirmed that the thickness of UD GFRP increased with a decrease of the restrained tip deflection when a thickness of UD CFRP laminates was constrained to 9 mm. The weight of the optimized spar-cap increased up to 96.2% while the maximum longitudinal tensile stress decreased up to 24.6%. The thickness of UD GFRP laminates increased with a decrease of the thickness of UD CFRP laminates when the tip deflection was constrained to 126.83 mm. The weight increased up to 40.1%, but the material cost decreased up to 16.97%. Finally, the relationships among the weight, internal tensile stress, and material costs were presented based on the optimized thicknesses of the spar cap.

A Study on the Anterior Decision Design Factor in Product Development - An Approach to the Multi-Sequential Design Process (제품개발에서 디자인의 선행적 결정인자(先行的 決定因子)에 대한 연구 - 다원적(多元的) 디자인 프로세스로의 접근 -)

  • Kim, Hyeon
    • Archives of design research
    • /
    • v.13
    • /
    • pp.45-53
    • /
    • 1996
  • After the callapse of the 80's bubble economy. consumers tend to consider the fundamental values of a product such as price, usage, and quality more significantly than ever before. Due to this change in attitude. the most important factor in a consumer's decision for choosing a product becomes the quality of a product that safisfies consumer's practical values whith convincing features and logical differentiations devoted to fundamental values. Under the circumstances. Factor Oriented Process and Multi-Sequential Process are proposede not just as merely defining concept through study of consumers' needs. but as methods of gaining competitive edge and eatablishing corporate identity in market, competition by bringing out consumers' various wants and needs to lead them to a specific product. Factor Oriented Process emphasizes the analysis of factors within the process itself, especially the synthesis of factors which would bring about new solutions as its special feature and acts as a logical element for further design development. Thus, the synthesis process consists of re-organizing analyzed factors, andduring this process, analyzing correlation between the restrictions of factors would lead to discovery of 'dominant factors'. Afterward, design basis may be formed with design concepts proposed by several concept codes made up of one dominant factor and other associate factors. Multi-Sequential Process is an extensive approach to discover differentiated design proposals through careful examination of dominant factors within the product, and furthermor, to discount 'anterior factor' (directional factors that decide design directions based on multi-value criteria) for self-determined decision of design directions.

  • PDF