• Title/Summary/Keyword: Directional Interpolation

Search Result 77, Processing Time 0.024 seconds

Motion Linearity-based Frame Rate Up Conversion Method (선형 움직임 기반 프레임률 향상 기법)

  • Kim, Donghyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.734-740
    • /
    • 2017
  • A frame rate up-conversion scheme is needed when moving pictures with a low frame rate is played on appliances with a high frame rate. Frame rate up-conversion methods interpolate the frame with two consecutive frames of the original source. This can be divided into the frame repetition method and motion estimation-based the frame interpolation one. Frame repetition has very low complexity, but it can yield jerky artifacts. The interpolation method based on a motion estimation and compensation can be divided into pixel or block interpolation methods. In the case of pixel interpolation, the interpolated frame was classified into four areas, which were interpolated using different methods. The block interpolation method has relatively low complexity, but it can yield blocking artifacts. The proposed method is the frame rate up-conversion method based on a block motion estimation and compensation using the linearity of motion. This method uses two previous frames and one next frame for motion estimation and compensation. The simulation results show that the proposed algorithm effectively enhances the objective quality, particularly in a high resolution image. In addition, the proposed method has similar or higher subjective quality than other conventional approaches.

Omni-directional Surveillance and Motion Detection using a Fish-Eye Lens (어안 렌즈를 이용한 전방향 감시 및 움직임 검출)

  • Cho, Seog-Bin;Yi, Un-Kun;Baek, Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.79-84
    • /
    • 2005
  • In this paper, we developed an omni-directional surveillance and motion detection method. The fish-eye lens provides a wide field of view image. Using this image, the equi-distance model for the fish-eye lens is applied to get the perspective and panorama images. Generally, we must consider the trade-off between resolution and field of view of an image from a camera. To enhance the resolution of the result images, some kind of interpolation methods are applied. Also the moving edge method is used to detect moving objects for the object tracking.

Directional Block Loss Recovery sing Hypothesis Testing Problem (가설 검증 기법을 이용한 방향성을 가지는 손실 블록의 복구)

  • Hyun, Seung-Hwa;Kim, Yoo-Shin;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, we present a directional error concealment technique to compensate a lost block. Generally, the strong edge of an image has the large amounts of the variance because of its large coefficients in the wavelet domain. For estimating edge direction of a lost block, a $X^2$ hypothesis-testing problem is applied using the variance of wavelet coefficients. The lost block is interpolated according to the estimated edge direction. The pixels for interpolation is obtained from the edge direction. The proposed method outperforms the previous methods in objective and subjective qualities.

Adaptive spatio-temporal deinterlacting algorithm based on bi-directional motion compensation (양방향 움직임 기반의 시공간 적응형 디인터레이싱 기법)

  • Lee, Sung-Gyu;Lee, Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.418-428
    • /
    • 2002
  • In this paper, we propose a motion-adaptive de-interlacing method using motion compensated interpolation. In a conventional motion compensated method, a simple pre-filter such as line averaging is applied to interpolate missing lines before the motion estimation. However, this method causes interpolation error because of inaccurate motion estimation and compensation. In the proposed method, EBMF(Edge Based Median Filter) as a pre-filter is applied, and new matching method, which uses two same-parity fields and opposite-parity field as references, is proposed. For further improvement, motion correction filter is proposed to reduce the interpolation error caused by incorrect motion. Simulation results show that the proposed method provides better performance than existing methods.

High-resolution image restoration based on image fusion (영상융합 기반 고해상도 영상복원)

  • Shin Jeongho;Lee Jungsoo;Paik Joonki
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.238-246
    • /
    • 2005
  • This paper proposes an iterative high-resolution image interpolation algorithm using spatially adaptive constraints and regularization functional. The proposed algorithm adapts adaptive constraints according to the direction of..edges in an image, and can restore high-resolution image by optimizing regularization functional at each iteration, which is suitable for edge directional regularization. The proposed algorithm outperforms the conventional adaptive interpolation methods as well as non-adaptive ones, which not only can restore high frequency components, but also effectively reduce undesirable effects such as noise. Finally, in order to evaluate the performance of the proposed algorithm, various experiments are performed so that the proposed algorithm can provide good results in the sense of subjective and objective views.

Vote Decision-based Deinterlacing Scheme For Directional Error Correction (방향성 오류 교정을 위한 투표 결정 기반의 디인터레이싱 방법)

  • Oh, Sye-Hoon;Lee, Yeo-Song;Ahn, Chang-Beom;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.342-356
    • /
    • 2009
  • This paper presents a vote decision-based deinterlacing scheme for false directional error correction(VDD) to convert interlaced signal into non-interlaced signal using only one fields. The VDD using the vote decision goes through four steps process. The first step extracts regions having doubt of false edge using MM-ELA method. In these regions, the edge direction is decided by the majority vote using upper adjacent pixels's information through the second step. But, we still have undecided directions, which will be decided by the majority vote and the directional average decision at the third step. This step preserves the edge directions and minimizes visual degradation. Finally, the last step interpolates undecided pixels using DOI method which can consider the fine edge direction. Although the VDD with hierarchical structure has a high complexity, it can extract delicate edge compared to other pixel-by-pixel or window-by-window deinterlacing algorithms. Simulation results show that it has significantly improved both the subjective and objective qualities of the reconstructed images.

3D SURFACE DISPLAY BY VOLUME RENDERING TECHNIQUE (입체묘사 기법에 의한 물체표면의 삼차원적 도시)

  • Lee, M.S.;Chun, K.W.;Ra, J.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.13-17
    • /
    • 1991
  • 3차원 데이타로부터 물체 표면의 입체 도시를 위한 semi-transparent volume rendering 방법은 다른 입체 도시 방법들보다 화질면에서 뛰어나다고 알려져 있다. 본 논문에서는 이러한 semi-transparent volume rendering 방법의 장점을 가지면서 더욱 성능을 향상시킨 입체 데이타 표면의 3차원 도시를 실현시켜 보았다. Aniosotrophic resolution의 3차원 데이타는 directional interpolation을 사용하여 artifact의 발생을 줄였으며 전처리 과정에서 물체 표면까지의 깊이 정보를 구함으로써 계산시간을 줄일 수 있었고 또한 물체의 불투명도 값에 의해 결정되는 표본 간격을 사용함으로써 quantization error를 줄일 수 있었다.

  • PDF

Effective Frame Rate Up-conversion Using Bi-directional Motion Estimation (양방향 움직임 추정을 이용한 효과적인 프레임 레이트 변환 알고리즘)

  • Park, Byung-Tae;Jung, You-Young;Ko, Sung-Jea
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.429-432
    • /
    • 2000
  • We propose a new frame rate up-conversion algorithm for high quality video. In the proposed scheme bidirectional motion estimation (ME) is performed to construct the motion vector. (MV) field for the frame to be interpolated. Unlike conventional motion-compensated interpolation (MCI) algorithms, the proposed technique does not produce any overlapped pixel and hole region in the interpolated frame, and thus can utilize the overlapped block motion compensation technique to reduce the blocking artifacts. The proposed algoritm is very simple to implement on consumer products when compared to conventional MCI methods. Computer simulation shows a high visual performance of the proposed frame rate up-conversion algorithm.

  • PDF

Improved Watermark Embbeding Algorithm Using Directional Prediction and Bilinear Interpolation (방향성 예측과 양선형 보간을 이용한 향상된 워터마크 삽입 방법)

  • Shin, Soo-Yeon;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.8
    • /
    • pp.30-39
    • /
    • 2014
  • The proposed watermark embedding algorithm uses histogram of difference image between a modified original image and predicted image. To increase the prediction performance of the predicted image, the reference pixels for prediction are adaptively selected and the other pixels are directionally interpolated with the reference pixels. The simulation result shows that the proposed algorithm gives good performances in the embedding capacity and the PSNR values.

Volume Rendering Technique for 3-D Visualization and Its Performance Improvements (물체의 3차원적 도시를 위한 입체묘사기법의 성능향상 및 그 응용)

  • Lee, Min-Seop;Cheon, Gang-Uk;Ra, J.B
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.79-88
    • /
    • 1991
  • Semi-transparent volume rendering technique can provide 3-D visualization well by voxel level Processing and alleviate segmentation arf, ifacts compared wish the surface rendering technique. In this Paper, we consider several new schemes which can improve she Perform ance of volume rendering. A directional interpolation method is proposed to reduce the artifact due to the anisotrophic resolution in X-ray CT data. The computation time for rendering is shortened by using the depth information of the 3-D object. And also, we reduce the quantization artifacts in the rendering by introducing the opacity-dependent sampling interval to sampling in ray-tracing.

  • PDF