• Title/Summary/Keyword: Directional Image

Search Result 480, Processing Time 0.033 seconds

Determination of Dose Correction Factor for Energy and Directional Dependence of the MOSFET Dosimeter in an Anthropomorphic Phantom (인형 모의피폭체내 MOSFET 선량계의 에너지 및 방향 의존도를 고려하기 위한 선량보정인자 결정)

  • Cho, Sung-Koo;Choi, Sang-Hyoun;Na, Seong-Ho;Kim, Chan-Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy Photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for $^{60}Co$ and $^{137}Cs$ photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom.

Microcrack Orientations in Tertiary Crystalline Tuff from Northeastern Gyeongsang Basin (경상분지 북동부의 제3기 결정질 응회암에서 발달하는 미세균열의 방향성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.115-135
    • /
    • 2009
  • We have studied general orientational characteristics of microcracks distributed in Tertiary crystalline tuff from the northeastern part of the Gyeongsang Basin. 108 sets of microcracks on horizontal surfaces of 6 rock samples from Heunghae-eup and Cheongha-myeon, Pohang-si areas were distinguished by image processing. Those microcrack sets show a distinct linear array in 38 images. Whole domain of the directional angle(${\theta}$)-frequency(N) chart for crystalline tuff can be divided into 20 domains in terms of the phases of the distribution of microcracks. From the related chart, microcrack sets show preferred orientation which are coincident with the direction of vertical common joints. Consequently, the potential for macroscopic vertical joints in a rock body can be inferred from the directional angle showing high frequency in each domain of the related chart. This joint pattern is nearly the same in Mesozoic granites from Seokmo-do, Gwanghwa-gun. From the rose diagram for orientations of microcrack in crystalline tuff, orientations of dominant sets of microcracks in terms of frequency orders reflect representative orientations of maximum principal stress acted on crystalline tuff. Meanwhile, orientations of microcracks in crystalline tuff were compared with those of open microcracks in Bulgugsa granites from the southwestern part of the Gyeongsang Basin, and vertical rift/grain planes from Mesozoic granite quarries in Korea. In regional distribution chart, the agreement of distribution pattern between above two types of microcrack sets and vertical planes suggests that microcrack systems developed in crystalline tuff probably occur regionally in Mesozoic granites in Korea.

Image Retrieval Using Spatial Color Correlation and Texture Characteristics Based on Local Fourier Transform (색상의 공간적인 상관관계와 국부적인 푸리에 변환에 기반한 질감 특성을 이용한 영상 검색)

  • Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, we propose a technique for retrieving images using spatial color correlation and texture characteristics based on local fourier transform. In order to retrieve images, two new descriptors are proposed. One is a color descriptor which represents spatial color correlation. The other is a descriptor combining the proposed color descriptor with texture descriptor. Since most of existing color descriptors including color correlogram which represent spatial color correlation considered just color distribution between neighborhood pixels, the structural information of neighborhood pixels is not considered. Therefore, a novel color descriptor which simultaneously represents spatial color distribution and structural information is proposed. The proposed color descriptor represents color distribution of Min-Max color pairs calculating color distance between center pixel and neighborhood pixels in a block with 3x3 size. Also, the structural information which indicates directional difference between minimum color and maximum color is simultaneously considered. Then new color descriptor(min-max color correlation descriptor, MMCCD) containing mean and variance values of each directional difference is generated. While the proposed color descriptor includes by far smaller feature vector over color correlogram, the proposed color descriptor improves 2.5 % ${\sim}$ 13.21% precision rate, compared with color correlogram. In addition, we propose a another descriptor which combines the proposed color descriptor and texture characteristics based on local fourier transform. The combined method reduces size of feature vector as well as shows improved results over existing methods.

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

Carotid Artery Intima-Media Thickness Measured by Iterated Layer-cluster Discrimination (순차적 층위군집(層位群集)판별에 의한 경동맥 내중막 두께 측정)

  • Hwang Jae-Ho;Kim Wuon-Shik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.89-100
    • /
    • 2006
  • The carotid intima-media thickness (IMT) is very important, because the severity of it is an independent predictor of transient cerebral ischemia, stroke, and coronary events such as myocardial infarction. The conventional image processing to measure the IMT has not been satisfactory, because the methods have relied on the manual section drawing and a regional segmentation by differential estimation. We propose a new image processing technology effective to extract features from the carotid artery image whose pixels have the directional vector properties with composed color distribution. The technique we presented here is not by differential variation but by verification of the layer properties of carotid artery image. Iterated vertical and horizontal analysis and segmentation of the IMT image show the vector characteristics. This new technique makes it possible to cluster the layers statistically, and to classify mathematical correlation between regions and resulting in correct measurements of thickness and its variation. The advantages and effectiveness of this approach are applicable to region process and character extraction of such a vector image.

Analysis of Quality Improvement of a Floating Image Using a Hybrid Retroreflective Mirror Array Sheet (혼성-병풍형 구조의 재귀반사 거울 배열판을 이용한 부양영상 개선 분석)

  • Yu, Dong Il;Baek, Young Jae;Yong, Hyeon Joong;O, Beom Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.4
    • /
    • pp.142-145
    • /
    • 2019
  • Normally, a corner cube retroreflector (CCRR) sheet is used as a retroreflective mirror array (RRMA) in a volumetric display. Each CCRR unit reflects light in the retroreflective direction, which is parallel to the incident light, and it makes a blurred image, as it shifts the position of light within its dimensions. Adopting a "curved planar wall" and "parabolic focusing" (x-axis), a hybrid-t(transverse direction)-RRMA is proposed, to improve the image quality and brightness. The improvement of image contrast is achieved by tuning a "linear v-shaped groove" structure to a "parabolic v-shaped groove". Also, the system has been simplified and the brightness enhanced 4 times by removing the half mirror.

Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm (ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계)

  • Kim, Hyun-Ki;Jin, Yong-Tak;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.173-178
    • /
    • 2014
  • In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.

Application of Image Processing Techniques to GPR Data for the Reliability Improvement in Subsurface Void Analysis (지표레이더(GPR) 탐사자료를 이용한 지하공동 분석 시 신뢰도 향상을 위한 영상처리기법의 활용)

  • Kim, Bona;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.2
    • /
    • pp.61-71
    • /
    • 2017
  • Recently, ground-penetrating radar (GPR) surveys have been actively carried out for precise subsurface void investigation because of the rapid increase of subsidence in urban areas. However, since the interpretation of GPR data was conducted based on the interpreter's subjective decision after applying only the basic data processing, it can result in reliability problems. In this research, to solve these problems, we analyzed the difference between the events generated from subsurface voids and those of strong diffraction sources such as the buried pipeline by applying the edge detection technique, which is one of image processing technologies. For the analysis, we applied the image processing technology to the GRP field data containing events generated from the cavity or buried pipeline. As a result, the main events by the subsurface void or diffraction source were effectively separated using the edge detection technique. In addition, since subsurface voids associated with the subsidence has a relatively wide scale, it is recorded as a gentle slope event unlike the event caused by the strong diffraction source recorded with a sharp slope. Therefore, the directional analysis of amplitude variation in the image enabled us to effectively separate the events by the subsurface void from those by the diffraction source. Interpretation based on these kinds of objective analysis can improve the reliability. Moreover, if suggested techniques are verified to various GPR field data sets, these approaches can contribute to semiautomatic interpretation of large amount of GPR data.

An Optimal 2D Quadrature Polar Separable Filter for Texture Analysis (조직분석을 위한 최적 2차원 Quadrature Polar Separable 필터)

  • 이상신;문용선;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.288-296
    • /
    • 1992
  • This paper describes an improved 2D QPS(quadrature polar separable) filter design and its applications to texture processing. The filter kernel pair consists of the product of a radial weighting function based on the finite PSS (prolate spheroidal sequences) and an exponential at tenuation function for the orientational angle. It is quadrature and polar separable in the frequency domain. It is near optimal in the energy loss because we let the orientational angle function approximate the radial weighting function. The filter frequency characteristics is easy to control as it depends only upon the design specifications such as the bandwidth, the directional angle, the attenuation constant, and the shift constant of the central frequency. Some applications of the filter in texture processing, such as the generation of the texture image, the estimation of orientation angles, and the segmentations for the synthetic texture image, are considered. The result shows that the filter with the wide bandwidth can be used for the generation of discrimination of the strong orientational textures and the segmentation results are good.

  • PDF

The Variable Block-based Image Compression Technique using Wavelet Transform (웨이블릿 변환을 이용한 가변블록 기반 영상 압축)

  • 권세안;장우영;송광훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1378-1383
    • /
    • 1999
  • In this paper, an effective variable-block-based image compression technique using wavelet transform is proposed. Since the statistical property of each wavelet subband is different, we apply the adaptive quantization to each wavelet subband. In the proposed algorithm, each subband is divided into non-overlapping variable-sized blocks based on directional properties. In addition, we remove wavelet coefficients which are below a certain threshold value for coding efficiency. To compress the transformed data, the proposed algorithm quantizes the wavelet coefficients using scalar quantizer in LL subband and vector quantizers for other subbands to increase compression ratio. The proposed algorithm shows improvements in compression ratio as well as PSNR compared with the existing block-based compression algorithms. In addition, it does not cause any blocking artifacts in very low bit rates even though it is also a block-based method. The proposed algorithm also has advantage in computational complexity over the existing wavelet-based compression algorithms since it is a block-based algorithm.

  • PDF