• Title/Summary/Keyword: Directional Element

Search Result 225, Processing Time 0.03 seconds

An Eedge-Based Adaptive Morphology Algorithm for Image Nosie Reduction (에지 정보를 이용한 잡음 제겅용 적응적 수리 형태론 알고리즘)

  • 김상희;문영식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.84-96
    • /
    • 1997
  • In this paper an efficient morphologica algorithm for reducing gaussian and impulse noise in gray-scale image is presented. Based on the edge information the input image is partitioned into a flat region and an edge region, then different algorithms are selectively applied to each region. in case of impulse noise, MGR (morphologica grayscale reconstruction) algorithm with directional SE (structuring element) is applied to the flat region. For theedge region opening-closing (closing-opening) is used instead of dialation (erosion), so that the remaining noise around large objects can be removed. In case of gaussian noise, 5*5 OCCO(opening closing closing opening) and 3*3 DMF(directional morphological filter ) are used for the flat region and the edgeregion, respectively. In order to remove discontinuity at the edge boundary, the algorithm uses 3*3 OCCO around the edge region to reconstruct the final image. Experimetnal results have shown that the proposed algorithm achieves a high performance in terms of noise removal, detail preservation, and NMSE.

  • PDF

Effects of Precipitate Element Addition on Microstructure and Magnetic Properties in Magnetostrictive Fe83Ga17 alloy

  • Li, Jiheng;Yuan, Chao;Zhang, Wenlan;Bao, Xiaoqian;Gao, Xuexu
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • The <100> oriented $Fe_{83}Ga_{17}$ alloys with various contents of NbC or B were prepared by directionally solidification method at the growth rate of $720mm{\cdot}h^{-1}$. With a small amount of precipitates, the columnar grains grew with cellular mode during directional solidification process, while like-dendrite mode of grains growth was observed in the alloys with higher contents of 0.5 at% due to the dragging effect of precipitates on the boundaries. The NbC precipitates disperse both inside grains and along the boundaries of $Fe_{83}Ga_{17}$ alloys with NbC addition, and the Fe2B secondary phase particles preferentially distribute along the grain boundaries in B-doped alloys. Precipitates could affect grain growth and improved the <100> orientation during directional solidification process. Small amount of precipitate element addition slightly increased the magnetostrictive strain, and a high value of 335 ppm under pre-stress of 15 MPa was achieved in the alloys with 0.1 at% NbC. Despite the fact that the effect on magnetic induction density of small amount of precipitates could be negligible, the coercivity markedly increased with addition of precipitate element for $Fe_{83}Ga_{17}$ alloy due to the retarded domain motion resulted by precipitates.

Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation (강성 저하된 적층복합판의 비선형 해석)

  • Han, Sung-Cheon;Park, Weon-Tae;Lee, Won-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2661-2669
    • /
    • 2010
  • In this study, a finite element formulation based first-order shear deformation theory is developed for non-linear behaviors of laminated composite plates containing matrix cracking. The multi-directional stiffness degradation is developed for adopting the stiffness variation induced from matrix cracking, which is proposed by Duan and Yao. The matrix cracking can be expressed in terms of the variation of material properties, such as Young's modulus, shear modulus and Possion ratio of plates, and sequently it is possible to predict the variation of the local stiffness. Using the assumed natural strain method, the present shell element generates neither membrane nor shear locking behavior. Numerical examples demonstrate that the present element behaves quite satisfactorily either for the linear or geometrical nonlinear analysis of laminated composite plates. The results of laminated composite plates with matrix cracking may be the benchmark test for the non-linear analysis of damaged laminated composite plates.

A study onthe stability of a missile body ina simplified model by finite element method (유한요소법에 의한 단순화된 미사일 몸체 모델의 안정성에 관한 연구)

  • ;;Kim, Chan Soo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.4
    • /
    • pp.293-302
    • /
    • 1981
  • In this paper, the stability of a flexible missle, idealized as a free-free beam, is evaluated by using the finite element method. For the study, heavy machinery part is modeled as a concentrated mass and the thrust, which is controlled by a feedback sensor located at a predetermined position, is considered as a constant follower force. The aerodynamic forces, the structural damping, the cross sectional variation servo lag effect are neglected in this study. With unconstrained variational principle, the finite element method is applied to the nondimensionalized beam eqution. The matrix eigenvalue equation is obtained and the eigenvalues are calculated by a computer for the stability analysis. The stability is evaluated by the inspection of the eigenvalues are calculated by a computer for the stabilith analysis. The stabilith is evaluated by the inspection of the eigenvalues of the problem. For the study, the behaviors of the eigenvalues at various thrusts and the effects of the magnitudes and positions of the concentrated mass and directional control constant are analyzed.

A Study on the Dynamic Characteristics of Catenary (가선계의 동특성 해석)

  • 최병두;김정수
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.525-532
    • /
    • 1998
  • In this study, dynamic characteristics of catenary that supplies electrical power to high-speed trains is investigated. A particular emphasis is placed on the effect of droppers on the dynamic response of the contact wire, a dropper is an element that connects the contact wire with the messenger wire so as to maintain near uniform compliance, Finite element model compressing 3 spans is constructed. For the linear model, droppers are modeled as linear springs with various stiffness values. Modal analysis is performed to obtain the natural frequencies and modes and the variation in the modal density distribution for changing stiffness values are noted. Impulse response is also obtained through computer simulation. In practice, dropper is a nonlinear element with low stiffness in compression and high stiffness in tension. Hence, dropper can be modeled as a nonlinear spring with hi-directional stiffness values. Impulse and harmonic responses are obtained for the nonlinear model through simulation. The responses aye also compared with the linear cases.

  • PDF

Free vibration of tapered BFGM beams using an efficient shear deformable finite element model

  • Nguyen, Dinh Kien;Tran, Thi Thom
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • An efficient and free of shear locking finite element model is developed and employed to study free vibration of tapered bidirectional functionally graded material (BFGM) beams. The beam material is assumed to be formed from four distinct constituent materials whose volume fraction continuously varies along the longitudinal and thickness directions by power-law functions. The finite element formulation based on the first-order shear deformation theory is derived by using hierarchical functions to interpolate the displacement field. In order to improve efficiency and accuracy of the formulation, the shear strain is constrained to constant and the exact variation of the cross-sectional profile is employed to compute the element stiffness and mass matrices. A comprehensive parametric study is carried out to highlight the influence of the material distribution, the taper and aspect ratios as well as the boundary conditions on the vibration characteristics. Numerical investigation reveals that the proposed model is efficient, and it is capable to evaluate the natural frequencies of BFGM beams by using a small number of the elements. It is also shown that the effect of the taper ratio on the fundamental frequency of the BFGM beams is significantly influenced by the boundary conditions. The present results are of benefit to optimum design of tapered FGM beam structures.

A Study on the Implementation of Indoor Topology Using Image Data (영상 데이터를 활용한 실내 토폴로지 구현에 관한 연구)

  • Kim, Munsu;Kang, Hye-Young;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.329-338
    • /
    • 2016
  • As the need of indoor spatial information has grown, many applications have been developed. Nevertheless, the major representations of indoor spatial information are on the 2D or 3D, recently, the service based on omni-directional image has increased. Current service based on omni-directional image is used just for viewer. To provide various applications which can serve the identifying the attribute of indoor space, query based services and so on, topological data which can define the spatial relationships between spaces is required. For developing diverse applications based on omni-directional image, this study proposes the method to generate IndoorGML data which is the international standard of indoor topological data model. The proposed method is consist of 3 step to generate IndoorGML data; 1) Analysis the core elements to adopt IndoorGML concept to image, 2) Propose the method to identify the element of ‘Space’ which is the core element of IndoorGML concept, 3) Define the connectivity of indoor spaces. The proposed method is implemented at the 6-floor of 21centurybuilding of the University of Seoul to generate IndoorGML data and the demo service is implemented based on the generated data. This study has the significance to propose a method to generate the indoor topological data for the indoor spatial information services based on the IndoorGML.

Effect of Joint Geometry on Anisotropic Deformability of Jointed Rock Masses (절리의 기하학적 속성이 절리성 암반의 이방적 변형 특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.271-285
    • /
    • 2020
  • In this study, a numerical experiment related to the stress-strain analysis was performed on 3-D discrete fracture network(DFN) systems based on the distinct element method to evaluate the effect of joint geometry on deformability of jointed rock masses. Using one or two joint sets with deterministic orientation, a total of 12 3-D DFN blocks having 10m cube domain were generated with different joint density and size distribution. Directional deformation modulus of the DFN cube blocks were estimated along the axis directions of 3-D cartesian coordinate. In addition, deviatoric stress directions were chosen at every 30° of trend and plunge in 3-D for some DFN blocks to examine the variability of directional deformation modulus with respect to joint geometry. The directional deformation modulus of the DFN block were found to reduce with the increase of joint size distribution. The increase in joint density was less likely to have a significant effect on directional deformation modulus of the DFN block in case of the effect of rock bridges was relatively large because of short joint size distribution. It, however, was evaluated that the longer the joint size, the increase in the joint density had a more significant effect on the anisotropic deformation modulus of the DFN block. The variation of the anisotropic deformation modulus according to the variations in joint density and size distribution was highly dependent on the number of joint sets and their orientation in the DFN block. Finally, this study addressed a numerical procedure for stress-strain analysis of jointed rock masses considering joint geometry and discussed a methodology for practical application at the field scale.

Plasticity Model of RC under Cyclic Load (주기하중을 받는 철근 콘크리트 소성 모델)

  • 박홍근;강수민;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.451-454
    • /
    • 1999
  • An existing plasticity model using multiple failure criteria is modified to describe the behavior of reinforced concrete planar members under cyclic load. Multiple failure criteria are used to define both isotropic damage of compressive crushing and anisotropic damage of tensile cracking. A numerical method is developed to define multi-directional and non-orthogonal crack directions. The material model is implemented in the finite element analysis and verified by comparison with existing experiments of reinforced concrete shear wall.

  • PDF

Development of Ultrasonic Linear Motor using Piezoelectric Ceramics (압전 초음파 선형 모터 개발)

  • Kim, Yeon-Bo;Han, Woo-Seok;Roh, Yong-Rae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.279-282
    • /
    • 2000
  • We have been designed and fabricated a bi-directional ultrasonic linear motor using piezoelectric ceramics. With the finite element method, we design and verify validity of the structure, and determine its optimal structure, size of design variables, material and boundary conditions for proper generation of the ultrasonic waves. Based on the design, a prototype of the ultrasonic linear motor has been fabricated and characterized, which thereby proves practical applicability of this new motor.

  • PDF