• 제목/요약/키워드: Directional Difference

검색결과 229건 처리시간 0.03초

회전식 수리저항성능 실험기를 이용한 지반의 수리저항특성과 전기비저항 특성의 상관관계 (Relationship between Electrical Resistivity and Hydraulic Resistance Capacity measured by Rotating Cylinder Test)

  • 김영상;정신현
    • 한국해안·해양공학회논문집
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2015
  • 우리나라 남서해안은 풍력발전에 최적지로 평가받고 있으며 최근 해상풍력 구조물을 포함하는 해안구조물의 건설이 증가하고 있다. 그러나 우리나라 남서해안의 조차는 3~8 m까지 발생하여 남서해안에 설치되는 풍력기초들은 횡방향력과 조류의 다방향 흐름에 의한 세굴로 전체 구조물에 예상치 못한 진동에 의한 불안정성이 야기될 수 있다. 이 연구에서는 회전식 수리저항성능 실험기를 이용하여 인공지반시료의 수리저항성능을 평가하였으며 전기비저항 측정결과와 비교하여 수리저항성능과 전기비저항 특성과의 상관관계에 대한 연구를 진행하였다. 실험결과 일방향 한계전단응력과 양방향 한계전단응력을 상한계와 하한계로 표시하고 전기비저항 특성과 상관관계를 도시하면 조립토와 세립토가 비교적 명확히 구분되고 한계전단응력과의 상관관계 도출이 가능한 것으로 나타났다.

광통신용 테이퍼 방향성 결합기의 설계 특성 (Design Characteristics of Tapered Directional Couplers in Optical Communication)

  • 손석용;호광춘;김영권
    • 전자공학회논문지D
    • /
    • 제36D권11호
    • /
    • pp.18-26
    • /
    • 1999
  • 최근, 유사 빔 전파방법이나 비 직교성 결합모드이론과 같은 다양한 근시적 해석법들이 중첩모드에 기초한 테이퍼 방향성 결합기의 그 광학적 특성을 분석하기 위하여 제안되어 왔다. 비록, 이들 접근 방식들이 특별한 구조에서 충분히 정확한 결과들을 제공하지만 테이퍼 전송 구조와 같은 민감한 광 소자 해석에는 불충분하다. 이를 위하여, 우리는 그 방향성 결합기의 전력전송을 정확하게 해석하기 위하여 새롭게 발전된 모드 전송선로, 해석법을 소개하고 이용하고자 한다. 이를 이용한 수치 해석 결과 대칭인 두 테이퍼 채널의 간격이 증가함에 따라 우/기 모드의 전파상수는 하나의 값으로 수렴하였다. 더욱이, 테이퍼 각도가 ${\theta}=0.1^{\circ}$일 때 하나의 전송 채널을 통하여 입사된 모드의 97%가 다른 전송 채널로 전송되었고, 그 기운 각도가 증가함에 따라 전력 전송은 현저하게 감소하였다.

  • PDF

Plants Disease Phenotyping using Quinary Patterns as Texture Descriptor

  • Ahmad, Wakeel;Shah, S.M. Adnan;Irtaza, Aun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3312-3327
    • /
    • 2020
  • Plant diseases are a significant yield and quality constraint for farmers around the world due to their severe impact on agricultural productivity. Such losses can have a substantial impact on the economy which causes a reduction in farmer's income and higher prices for consumers. Further, it may also result in a severe shortage of food ensuing violent hunger and starvation, especially, in less-developed countries where access to disease prevention methods is limited. This research presents an investigation of Directional Local Quinary Patterns (DLQP) as a feature descriptor for plants leaf disease detection and Support Vector Machine (SVM) as a classifier. The DLQP as a feature descriptor is specifically the first time being used for disease detection in horticulture. DLQP provides directional edge information attending the reference pixel with its neighboring pixel value by involving computation of their grey-level difference based on quinary value (-2, -1, 0, 1, 2) in 0°, 45°, 90°, and 135° directions of selected window of plant leaf image. To assess the robustness of DLQP as a texture descriptor we used a research-oriented Plant Village dataset of Tomato plant (3,900 leaf images) comprising of 6 diseased classes, Potato plant (1,526 leaf images) and Apple plant (2,600 leaf images) comprising of 3 diseased classes. The accuracies of 95.6%, 96.2% and 97.8% for the above-mentioned crops, respectively, were achieved which are higher in comparison with classification on the same dataset using other standard feature descriptors like Local Binary Pattern (LBP) and Local Ternary Patterns (LTP). Further, the effectiveness of the proposed method is proven by comparing it with existing algorithms for plant disease phenotyping.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

경사입사파 조건에서 유공구조물의 격벽효과에 대한 실험 (Experiments for Side Wall Effects of a Perforated Structure Under Oblique Incident Waves)

  • 이종인;김선우;김경호
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2343-2350
    • /
    • 2013
  • 본 연구에서는 불규칙파를 대상으로 한 경사입사파 내습시 유공구조물 전면에서의 파고분포를 파악하기 위해 평면수조를 이용한 수리실험을 수행하였다. 본 연구는 파랑의 전파특성에 있어 무공구조물과 유공구조물의 차이점과 유사점에 대해 검토하였으며, 특히 유공구조물의 유수실 폭과 유수실내 격벽의 효과에 대해 검토하였다. 제체 전면의 상대파고는 유공구조물인 경우와 무공구조물인 경우에 매우 큰 차이가 있음을 보였으며, 유수실내 격벽은 연파의 발달을 억제시키는 것으로 나타났다.

Information leakage in bi-directional IFD communication system with simultaneously transmitted jamming sequence

  • Ju, Hyungsik;Gwak, Donghyuk;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.138-149
    • /
    • 2020
  • In this paper, we describe a simultaneously transmitted jamming (ST-jamming) for bi-directional in-band full-duplex (IFD) system to improve information security at the physical layer. By exploiting ST-jamming, each legitimate user transmits data samples and jamming samples together in one orthogonal frequency division multiplexing symbol according to given traffic asymmetry. Regardless of the traffic difference in both directions in IFD communication, eavesdropping of confidential information is prevented in both directions simultaneously without the loss of data rate. We first propose an encoding scheme and the corresponding decoding scheme for ST-jamming to be used by the legitimate users. In addition, we study a transceiver structure of the legitimate users including a baseband modem uniquely designed for the use of ST-jamming. The leakage of confidential information at an eavesdropper is then quantified by studying the mutual information between the confidential transmit signals and the received signals of the eavesdropper. Simulation results show that the proposed ST-jamming significantly reduces the leakage of legitimate information at the eavesdropper.

민감도 정보를 이용한 설계 방법 (A Design Using Sensitivity Information)

  • 김용일;이정욱;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1248-1253
    • /
    • 2003
  • Sensitivity information has been used for linearization of nonlinear functions in optimization. Basically, sensitivity is a derivative of a function with respect to a design variable. Design sensitivity is repeatedly calculated in optimization. Since sensitivity calculation is extremely expensive, there are studies to directly use the sensitivity in the design process. When a small design change is required, an engineer makes design changes by considering the sensitivity information. Generally, the current process is performed one-by-one for design variables. Methods to exploit the sensitivity information are developed. When a designer wants to change multiple variables with some relationship, the directional derivative can be utilized. In this case, the first derivative can be calculated. Only small design changes can be made from the first derivatives. Orthogonal arrays can be used for moderate changes of multiple variables. Analysis of Variance is carried out to find out the regional influence of variables. A flow is developed for efficient use of the methods. The sensitivity information is calculated by finite difference method. Various examples are solved to evaluate the proposed algorithm.

  • PDF

단일시편방법의 CLS 시편 적용시 적층성이 미치는 영향 (Effects of Stacking Sequence on the Application of the Single Specimen Technique to CLS Specimen)

  • 이경엽;양준호
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1952-1959
    • /
    • 1999
  • The work factor approach, so-called single specimen technique could be used to determine energy release rate from a single test record for unidirectional CLS specimen. In the present study, the work factor approach was extended to determine the mixed-mode fracture toughness of multi-directional graphite/epoxy laminated composites. Multi-directional CLS specimens were used for fracture tests. The stacking sequences used for the lap and the strap were $[90_2/0_2]_s/[0_4/90_4]_s$ and $[0/\pm45/0]_s/[0_2/\pm45_2/0_2]_2$, respectively. For both cases, the fracture toughness determined from the work factor approach was compared with that determined from the compliance method. It was found that both methods produced fracture toughness within a maximum 15% difference for each stacking sequence. The fractography analysis also showed that the fiber bridging occurred for$[0/\pm45/0]_s/[0_2/\pm45_2/0_2]_2$ case while it did not occur for $[90_2/0_2]_s/[0_4/90_4]_s$ case.

얼굴의 대칭성을 이용하여 조명 변화에 강인한 2차원 얼굴 인식 시스템 설계 (Design of Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation)

  • 김종범;오성권
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1104-1113
    • /
    • 2015
  • In this paper, we propose Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation. Preprocessing process is carried out to obtain mirror image which means new image rearranged by using difference between light and shade of right and left face based on a vertical axis of original face image. After image preprocessing, high dimensional image data is transformed to low-dimensional feature data through 2-directional and 2-dimensional Principal Component Analysis (2D)2PCA, which is one of dimensional reduction techniques. Polynomial-based Radial Basis Function Neural Network pattern classifier is used for face recognition. While FCM clustering is applied in the hidden layer, connection weights are defined as a linear polynomial function. In addition, the coefficients of linear function are learned through Weighted Least Square Estimation(WLSE). The Structural as well as parametric factors of the proposed classifier are optimized by using Particle Swarm Optimization(PSO). In the experiment, Yale B data is employed in order to confirm the advantage of the proposed methodology designed in the diverse illumination variation

Simultaneous Detection of Biomolecular Interactions and Surface Topography Using Photonic Force Microscopy

  • 허승진;김기범;조용훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.402.1-402.1
    • /
    • 2014
  • Photonic force microscopy (PFM) is an optical tweezers-based scanning probe microscopy, which measures the forces in the range of fN to pN. The low stiffness leads proper to measure single molecular interaction. We introduce a novel photonic force microscopy to stably map various chemical properties as well as topographic information, utilizing weak molecular bond between probe and object's surface. First, we installed stable optical tweezers instrument, where an IR laser with 1064 nm wavelength was used as trapping source to reduce damage to biological sample. To manipulate trapped material, electric driven two-axis mirrors were used for x, y directional probe scanning and a piezo stage for z directional probe scanning. For resolution test, probe scans with vertical direction repeatedly at the same lateral position, where the vertical resolution is ~25 nm. To obtain the topography of surface which is etched glass, trapped bead scans 3-dimensionally and measures the contact position in each cycle. To acquire the chemical mapping, we design the DNA oligonucleotide pairs combining as a zipping structure, where one is attached at the surface of bead and other is arranged on surface. We measured the rupture force of molecular bonding to investigate chemical properties on the surface with various loading rate. We expect this system can realize a high-resolution multi-functional imaging technique able to acquire topographic map of objects and to distinguish difference of chemical properties between these objects simultaneously.

  • PDF