• Title/Summary/Keyword: Direct-drive DC motor

Search Result 45, Processing Time 0.025 seconds

Lead-Lag Controller Design of Direct Drive Servo Valve Using Complex Method (컴플렉스법에 의한 직접구동형서보밸브의 진상-지상 제어기 설계)

  • Lee, Seong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1719-1726
    • /
    • 2004
  • Direct drive servovalve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the DC motor. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the lead-lag controller is designed using the complex method that is one kind of constrained direct search method.

A Novel Seamless Direct Torque Control for Electric Drive Vehicles

  • Ghaderi, Ahmad;Umeno, Takaji;Amano, Yasushi;Masaru, Sugai
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Electric drive vehicles (EDV) have received much attention recently because of their environmental and energy benefits. In an EDV, the motor drive system directly influences the performance of the propulsion system. However, the available DC voltage is limited, which limits the maximum speed of the motors. At high speeds, the inverter voltage increases if the square wave (SW) voltage (six-step operation) is used. Although conventional direct torque control (DTC) has several advantages, it cannot work in the six-step mode required in high-speed applications. In this paper, a single-mode seamless DTC for AC motors is proposed. In this scheme, the trajectory of the reference flux changes continuously between circular and hexagonal paths. Therefore, the armature voltage changes smoothly from a high-frequency switching pattern to a square wave pattern without torque discontinuity. In addition, because multi-mode controllers are not used, implementation is more straightforward. Simulation results show the voltage pattern changes smoothly when the motor speed changes, and consequently, torque control without torque discontinuity is possible in the field weakening area even with a six-step voltage pattern.

Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method (해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계)

  • Lee, S.R.;Choi, H.Y.;Moon, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.507-514
    • /
    • 2001
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

  • PDF

Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method (해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계)

  • Lee, Seong-Rae;Choe, Hyeon-Yeong;Mun, Ui-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.754-763
    • /
    • 2002
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

A Programmable High-Pass Filter Based Stator Flux Estimation for a Direct Vector Controlled Induction Motor Drive System (프로그램어블 고역필터를 사용한 직접 벡터제어 유도전동기 구동시스템의 고정자 자속 계산)

  • Jeon, Tae-Won;Choe, Myeong-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • The novel integration method with programmable high-pass filter is suggested in order to solve the problem of integration for stator flux estimation in a stator flux oriented direct vector controlled induction motor drive system. The dc offset in a pure integrator is eliminated using high-pass filter with fixed time constant, and then time constant of programmable high-pass filter is controlled with a inverter frequency for integration in a wide frequency range, considering phase lag and attenuation due to both the hardware low-pass filter and high-pass filter. The proposed method is verified with the experimental results implemented by 32-bit DSP.

  • PDF

Characteristic Analysis of Tubular type Slotless Linear DC Motor (Slotless Tubular type 선형 직류 전동기의 특성 해석)

  • Kim, Byong-Kuk;Jo, Won-Young;Kim, Tae-Hyun;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1177-1179
    • /
    • 2005
  • This paper presents the characteristic analysis of slotless tubular type Linear DC Motor with Permanent Magnet excitation as variation of magnetic pole-pitch ratio. The stator armature winding of this motor is designed to wind at inner stator around the mover mounted with permanent magnet. First the practical model of this motor is made and its parameter is measured, after this simulation is carried out. Comparing the simulation results as variation of pole-pitch ratio, it can be seen that the reaching ability makes it useful in applications requiring a small, direct-drive actuator, which is required to extend into a specially constrained environment.

  • PDF

Hopping Robot Using Direct-drive Method and Thermal Modeling to Analyze Motor Limitation (Direct-drive를 활용한 소형 연속 도약 로봇 및 DC모터의 열 모델을 통한 한계 분석)

  • Myeongjin Jang;Seongyo Yang;Gwang-Pil Jung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.53-57
    • /
    • 2024
  • A hopping robot can move through a confined environment while overcoming obstacles. To create a small hopping robot, it must be able to generate a large amount of energy and release it at the same time. However, due to the small size of the robot, there is a limit to the size of the actuator that can be used, so it is mainly used to collect energy in an elastic element and release it at once. In this paper, we propose a small hopping robot with a simplified design by removing ancillary parts and enabling continuous hopping using only a small actuator based on a direct-drive method. In addition, repeated actuation over the rated voltage can cause thermal breakdown of the actuator. To check the safety of the actuator at high voltage, we perform modeling to predict the temperature of the actuator and verify the accuracy of the modeling through experiments.

Development of Direct drive Electro-mechanical Actuation System for Thrust Vector Control of KSLV-II (한국형발사체 추력벡터제어 직구동 방식 전기기계식 구동장치시스템 개발)

  • Lee, Hee-Joong;Kang, E-Sok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.911-920
    • /
    • 2016
  • For the pitch and yaw axis attitude control of launch vehicle, thrust vector control which changes the direction of thrust during the engine combustion is commonly used. Hydraulic actuation system has been used generally as a drive system for the thrust vector control of launch vehicles with the advantage of power-to-weight ratio. Nowadays, due to the developments of highly efficient electric motor and motor control techniques, it has done a lot of research to adopt electro-mechanical actuator for thrust vector control of small-sized launch vehicles. This paper describes system design and test results of the prototype of direct drive electro-mechanical actuation system which is being developed for the thrust vector control of $3^{rd}$ stage engine of KSVL-II.

PID Controller and Derivative-feedback Gain Design of the Direct-drive Servo Valve Using the Root Locus and Manual Tuning (근궤적과 수동 조정에 의한 직접 구동형 서보밸브의 PID 제어기 및 미분피드백 이득 설계)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • The direct-drive servo valve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the dc motor. Since the DDV structure is simple, it is less expensive, more reliable, and offers a reduced internal leakage and a reduced sensitivity to fluid contamination. The control system of the DDV is highly nonlinear due to a current limiter, a voltage limiter, and the flow-force effect on the spool motion. The shape of the step response of the DDV-control system varies considerably according to the magnitudes of the step input and the load pressure. The system-design requirements mean that the overshoots should be less than 20%, and the errors at 0.02s should be less than 2%, regardless of the reference-step input sizes of 1V and 5V and the load-pressure magnitudes of 0MPa and 20.7MPa. To satisfy the system-design requirements, the PID-controller parameters of $K_c$, $T_i$ and $T_d$, and the derivative-feedback gain of $K_{der}$ are designed using the root locus and manual tuning.

Torque Ripple Minimization for Induction Motor Driven by a Photovoltaic Inverter

  • Atia, Yousry
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.679-690
    • /
    • 2009
  • The paper presents a new photovoltaic inverter for stand-alone induction motor application. The proposed system is composed of two stages. First stage is for the photovoltaic dc power feeding and second stage is dedicated to the motor-inverter subsystem and control technique. A direct torque control (DTC) with a novel switching strategy for motor torque ripple minimization is introduced. The novel DTC strategy is based on selecting a suitable voltage vector group for motor torque ripple minimization. A three-level voltage source inverter (VSI) is used instead of a two level inverter because the first has more available vectors and lower ripples in the output current and flux than the second, thus it has lower torque ripples. The photovoltaic array and battery bank are sized and the configuration is indicated based on sun-hour methodology. Simulation results show a comparison between three systems; two level VSI with conventional DTC strategy, three level VSI with conventional DTC, and the proposed system that has a novel DTC switching strategy applied to three level VSI. The results show that the proposed system has lower ripples in the current, flux and torque of the motor.