• Title/Summary/Keyword: Direct-Driven Wind Generator

Search Result 24, Processing Time 0.047 seconds

Optimal Design of Direct-driven PM Wind Generator for Maximum Annual Energy Production (연간 최대 에너지 생산량을 위한 직접구동 영구자석 풍력 발전기의 최적설계)

  • Cho, Myung-Soo;Lee, Cheol-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.3-5
    • /
    • 2006
  • In this paper, annual energy production(AEP) of the wind generator system is analogized considering the regions of a variable wind speed and it is applied to optimal design of the PM wind generator for capturing maximum energy in the operating regions. In addition, internet parallel computing is used to loose excessive calculation times through optimization of the finite element analysis(FEA).

  • PDF

Optimal design of Direct-Driven PM Wind Generator Using Dynamic Encoding Algorithm for Searches(DEAS) (DEAS(Dynamic Encoding Algorithm for Searches)를 이용한 풍력발전기 최적설계)

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Kim, Jong-Wook;Kim, Eun-Su;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.59-61
    • /
    • 2008
  • Optimal design of the direct-driven PM Wind Generator, combined with DEAS(Dynamic Encoding Algorithm for Searches) and FEM(Finite Element Method), has been proposed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. In particular, DEAS has been contributed to reducing the excessive computing time for the optimization process.

  • PDF

Study on Rotating Speed of Kite Wind Turbine System and Design of PM Generator (연 풍력시스템의 회전속도 측정 및 발전기 시스템에 적용 가능한 영구자석 발전기 설계에 관한 연구)

  • Shin, Yujeong;Kim, Soo-Hyun;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.141-147
    • /
    • 2016
  • A direct PM generator has the effect of reducing the mechanical noise and ease of maintenance by eliminating a number of power transmission components. In addition, wind turbines operating at low speed with the advantages of high output, high efficiency, and small size. The generator was designed as a small direct-drive PM generator that can be applied to a kite even at low wind speeds. The RPM (Revolutions Per Minute) of the reel was measured in two ways using a cadence/speedometer sensor and a tachometer while the actual kite. The RPM derived from the experiment was applied to the simulation on the designed generator. The no-load characteristic analysis for the magnetic fields produced for the permanent magnet generator by a permanent magnet and stator winding currents is achieved using a 2D coordinate system. A commercial electromagnetic analysis program, ANSYS Maxwell, was used to model the electromagnetic dynamics.

Optimal Design of Permanent Magnet Wind Generator for Maximum Annual Energy Production (최대 연간 에너지 생산을 위한 영구자석형 풍력발전기의 최적설계)

  • Jung, Ho-Chang;Jung, Sang-Yong;Hahn, Sung-Chin;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2109-2115
    • /
    • 2007
  • The wind generators have been installed with high output power to increase the energy production and efficiency. Hence, Optimal design of the direct-driven PM wind generator, coupled with F.E.M(Finite Element Method) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the whole wind speed characterized by the statistical model of wind speed distribution. Particularly, the parallel computing via internet web service has been applied to loose excessive computing times for optimization. The results of the optimal design of Surface-Mounted Permanent Magnet Synchronous Generator(SPMSG) are compared with each other candidates to verify the usefulness of the maximizing AEP model.

Performance Analysis of Axial-Flux Permanent-Magnet Synchronous Generator for Wind Power Applications (횡자속형 영구자석 풍력발전기의 운전특성 해석)

  • Hwang, Don-Ha;Kang, Do-Hyun;Kim, Yong-Joo;Choi, Kyeong-Ho;Bae, Sung-Woo;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.143-145
    • /
    • 2003
  • In this paper, wind power system with direct-driven axial-flux type permanent-magnet (PM) synchronous generator, 10 [kVA], 300 [rpm], is presented. In order to analyze the performance of axial PM generator, finite-element (FE) analysis is used, and the 2-dimensional equivalent model is developed. The steady-state and transient-state characteristics are respectively analyzed at no-load and resistive-inductive loads. The test results of driving characteristics are presented as well. The results are very similar to predicted performance of design. Proposed generator is feasible for use with a small-class wind power applications.

  • PDF

A Study on Electromagnetic Structural Design of AFPM Generator for Urban Wind Turbine (도시형 풍력발전기용 AFPM 발전기의 전자기적 구조설계에 관한 연구)

  • Cho, Jun-Seok;Choi, Se-Kwon;Kim, Ju-Yong;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.830_831
    • /
    • 2009
  • Wind power system attracts most interest because of high-energy efficiency with environment-friendly. Small scale wind power applications requires a cost effective and mechanically simple generator in order to be a reliable energy source. The use of direct driven generators, instead of geared machines, reduces the number of drive components, which offers the opportunity to reduce costs and increases system reliability and efficiency. This paper presents the development of a coreless axial-flux permanent magnet(AFPM) generator for a urban wind power system. It is analyzed by electromagnetic simulation program Maxwell 3D

  • PDF

Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines

  • Chung, Dae-Won;You, Yong-Min
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.176-185
    • /
    • 2015
  • We present the design optimization of the magnetic pole and slot design options that minimize the cogging torque of permanent-magnet (PM) brushless generators for small wind turbine generators. Most small wind-turbines use direct-driven PM generators which have the characteristics of low speed and high efficiency. Small wind-turbines are usually self-starting and require very simple controls. The cogging torque is an inherent characteristic of PM generators, and is mainly caused by the generator's geometry. The inherent the cogging torque can cause problems during turbine start-up and cut-in in order to start softly and to run a power generator even when there is little wind power during turbine start-up. Thus, to improve the operation of small turbines, it is important to minimize the cogging torque. To determine the effects of the cogging torque reductions, we adjust the slot opening width, slot skewing, mounting method of magnets, magnet shape, and the opening and combinations of different numbers of slots per pole. Of these different methods, we combine the methods and optimized the design variables for the most significant design options affecting the cogging torque. Finally, we apply to the target design model and compare FEA simulation and measured results to validate the design optimization.

Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계)

  • Kim, Seong-Soo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

Optimal Design of PM Wind Generator using Memetic Algorithm (Memetic Algorithms을 적용한 영구자석 풍력발전기 최적설계)

  • Park, Ji-Seong;Ahn, Young-Jun;Kim, Jong-Wook;Lee, Chel-Gyun;Jung, Sang-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.6-8
    • /
    • 2009
  • This paper presents the novel implementation of memetic algorithm with GA (Genetic Algorithm) and MADS (Mesh Adaptive Direct Search), which is applied for optimal design methodology of electric machine. This hybrid algorithm has been developed for obtaining the global optimum rapidly, which is effective for optimal design of electric machine with many local optima and much longer computation time. In particular, the proposed memetic algorithm has been forwarded to optimal design of direct-driven PM wind generator for maximizing the Annual Energy Production (AEP), of which design objective should be obtained by FEA (Finite Element Analysis). After all, it is shown that GA combined with MADS has contributed to reducing the computation time effectively for optimal design of PM wind generator when compared with purposely developed GA implemented with the parallel computing method.

  • PDF