• 제목/요약/키워드: Direct-Driven

검색결과 270건 처리시간 0.025초

엔진 직결식 PTO 전동 라인의 주요 설계 변수가 PTO 변속부의 치타음에 미치는 영향 (Effects of Design Parameters on Rattle Noise in a Direct Engine-PTO Driveline of Tractors)

  • 박영준;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제31권4호
    • /
    • pp.323-333
    • /
    • 2006
  • Introduction of a direct engine-PTO driveline to agricultural tractors has reduced production cost and increased transmission efficiency of the PTO driveline. However, this type of PTO driveline has caused a severe rattle noise in the PTO gearbox under idle conditions. This study was conducted to investigate the causes of the rattle noise and the effects of driveline parameters on it. A mathematical model was developed for a direct engine-PTO driveline. The model was proved experimentally to be accurate enough to simulate the dynamic characteristics of the PTO driveline motions. The simulation study showed that the rattle noise was caused by collisions between the driving and driven gears in the PTO gearbox due to velocity variation of the gears, which was induced by torque fluctuations from the engine. It was also found that the rattle noise decreased with the drag torque and mass moment of inertia of the engine flywheel. Smaller mass moment of inertia of the driven gears and backlash also reduced the rattle noise. However, increasing the drag torque and mass moment of the engine flywheel or decreasing the backlash and mass moment of inertia of the driven gears were limited practically by their detrimental effects on transmission efficiency, gear strength and smooth meshing of the gears.

Control and Analysis of Vienna Rectifier Used as the Generator-Side Converter of PMSG-based Wind Power Generation Systems

  • Zhao, Hongyan;Zheng, Trillion Q.;Li, Yan;Du, Jifei;Shi, Pu
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.212-221
    • /
    • 2017
  • Permanent-Magnet Synchronous Generators (PMSGs) are used widely in Wind Power Generation Systems (WPGSs), and the Vienna rectifier was recently proposed to be used as the generator-side converter to rectify the AC output voltage in PMSG-based WPGS. Compared to conventional six-switch two-level PWM (2L-PWM) converters, the Vienna rectifier has several advantages, such as higher efficiency, improved total harmonic distortion, etc. The motivation behind this paper is to verify the performance of direct-driven PMSG wind turbine system based-Vienna rectifier by using a simulated direct-driven PMSG WPGS. In addition, for the purpose of reducing the reactive power loss of PMSGs, this paper proposes an induced voltage sensing scheme which can make the stator current maintain accurate synchronization with the induced voltage. Meanwhile, considering the Neutral-Point Voltage (NPV) variation in the DC-side of the Vienna rectifier, a NPV balancing control strategy is added to the control system. In addition, both the effectiveness of the proposed method and the performance of the direct-driven PMSG based-Vienna rectifier are verified by simulation and experimental results.

DEAS를 이용한 직접구동형 풍력발전기 최적설계 (Optimal Design of Direct-Driven Wind Generator Using Dynamic Encoding Algorithm for Searches(DEAS))

  • 정호창;이철균;김은수;김종욱;정상용
    • 조명전기설비학회논문지
    • /
    • 제22권10호
    • /
    • pp.24-33
    • /
    • 2008
  • 본 논문에서는 유한요소법(Finite Element Method)을 기반으로 하는 직접 구동형 영구자석 풍력발전기를 DEAS(Dynamic Encoding Algorithm for Searches)를 이용하여 연간 최대에너지 생산량(Annual Energy Production : AEP) 최대화를 목표로 최적설계 하였다. 특히, 풍력발전기의 전 운전영역을 고려하기 위하여 해당풍속에서의 통계적 확률밀도와 연간 운전시간을 적용하여 연간 최대에너지 생산량을 산정 하였으며, 여기서 발생한 과도한 해석수행 연산시간을 줄이기 위해서 전역 최적화 알고리즘인 DEAS를 적용하여 풍력발전기 최적설계를 수행하였다.

The Onset and Growth of the Buoyancy-driven Fingering Driven by the Irreversible A+B→C Reaction in a Porous Medium: Reactant Ratio Effect

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.138-151
    • /
    • 2021
  • The effect of a reactant ratio on the growth of a buoyancy-driven instability in an irreversible A+B→C reaction system is analyzed theoretically and numerically. Taking a non-stoichiometric reactant ratio into account, new linear stability equations are derived without the quasi-steady state assumption (QSSA) and solved analytically. It is found that the main parameters to explain the present system are the Damköhler number, the dimensionless density difference of chemical species and the ratio of reactants. The present initial grow rate analysis without QSSA shows that the system is initially unconditionally stable regardless of the parameter values; however, the previous initial growth rate analysis based on the QSSA predicted the system is unstable if the system is physically unstable. For time evolving cases, the present growth rates obtained from the spectral analysis and pseudo-spectral method support each other, but quite differently from that obtained under the conventional QSSA. Adopting the result of the linear stability analysis as an initial condition, fully nonlinear direct numerical simulations are conducted. Both the linear analysis and the nonlinear simulation show that the reactant ratio plays an important role in the onset and the growth of the instability motion.

AMESim기반 CRDi용 인젝터의 2단분사 동적거동 특성해석 (Analysis of Dynamic Characteristics in Two-stage Injection for CRDi Injectors Based on AMESim Environment)

  • 조인수;권지원;이진욱
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.57-63
    • /
    • 2012
  • For reduction of CO, NOx and soot emission emitted by diesel diffusion combustion, the authors focused on injection actuator to improve fuel availability inside combustion chamber. In this study, it was investigated the internal dynamic characteristics of two-stage injection with diesel injectors with different driving type for the common rail direct injection by using the AMESim simulation code. The analysis parameter defined such as fuel pressure, injection hole's diameter and driven voltage. As the results, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. It was found the piezo-driven injector can be utilized effectively as multiple injector than solenoid-driven injector.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • 제8권3호
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

전압원 구동시의 전류형 인버어터의 특성연구 (A Study on characteristics of Current-Fed Type Inverter driven by Voltage Source)

  • 이달해;김동희;이봉섭;유동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.587-590
    • /
    • 1991
  • It is general to make the circuit analysis of current-fed type inverter driven by current source with rippleless input under the assumption of infinite induction Ld in direct current reactor(DCL). This paper focusing on the fact that Ld has bounded value in real circuit, examines operating characteristics by analysis of static state characteristics of current type inverter driven by voltage source and compares it with the operating characteristics of the circuit driven by current source.

  • PDF

커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교(II) - 솔레노이드 및 피에조 구동방식 비교분석 - (Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (II))

  • 이진욱
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.67-73
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for injector driving.

커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 - (Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I))

  • 이진욱
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

교류전원 구동방식에 의한 형광 OLED의 발광 특성 (Emission Characteristics of Fluorescent OLED with Alternating Current Power Source Driving Method)

  • 서정현;김지현;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제27권2호
    • /
    • pp.104-109
    • /
    • 2014
  • To operate organic light emitting device (OLED) with alternating current (AC) power source without AC/DC(direct current) converter, we fabricated the fluorescent OLED and measured the emission characteristics with AC and DC. The OLED operated by AC showed higher maximum current efficiency of 8.2 cd/A and maximum power efficiency of 8.3 lm/W. But current efficiency and power efficiency of AC driven OLED showed worse than DC driven OLED at high voltage above 10 V. This result can be explained by the peak voltage of AC was $\sqrt{2}$ times than DC, In case of low driving voltage the emission characteristics were improved by the peak voltage of AC, but in case of high driving voltage the emission efficiencies were decreased by the roll off phenomena. Finally, serial OLED arrays using twelve OLEDs driven by AC 110 V showed average voltage of 9.17 V, voltage uniformity of 99.0%, average luminance of $1,175cd/m^2$, luminance uniformity of 94.4%.