• Title/Summary/Keyword: Direct wave

Search Result 538, Processing Time 0.028 seconds

Behavior of Shear Zone by Improved Direct Shear Test (개선된 직접전단시험을 이용한 전단영역의 거동)

  • Byeon, Yong-Hoon;Truong, Q. Hung;Tran, M. Khoa;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.607-614
    • /
    • 2010
  • Shear behavior of granular soils largely affects the safety and stability of underground and earth structures. This study presents the characteristics of shear zone in a direct shear test using shear wave and electrical resistivity measurements. An innovative direct shear box made of transparent acrylic material has been developed to prevent direct electric current. Bender elements and electrical resistivity probe are embedded in the wall of direct shear box to estimate the shear wave velocities and the electrical resistivity at the shear and non-shear zones. Experimental results show that the void ratio and shear wave velocity at shear zone increase during shearing while the values remain constant at non-shear zone. The results demonstrate correlation among the contact force, small strain shear modulus, and void ratio at shear zone. This study suggests that the application of the modified direct shear box including shear wave and electrical resistivity measurements may become an effective tool for analyzing soil behavior at shear zone.

  • PDF

Comparative Study on the Application of Direct Analysis Method to Large Container Carriers (대형 컨테이너선의 직접해석법에 관한 비교 연구)

  • Ryu Hong-Ryeul;Lee Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.484-493
    • /
    • 2006
  • Recently, direct load analysis using ship motion program is required to confirm structural safety for the Post-Panamax class large container carrier. However, there is no exact comparative study data for structural response between 20 and 30 wave load. So, in this paper, to compare the hull girder stress response between 20 versus 3D wave load calculation method, direct load analysis and global F.E analysis have been performed for three kinds of large container vessels using each 20 and 30 wave load calculation program. The results of 2D wave load RAO(Response Amplitude Operator) of each dominant load parameter(vertical, torsional and horizontal moment) are generally bigger than that of 30 results, especially in vertical wave bending moment. And the results of structural analysis based on the equivalent design wave method shows that there is a big difference in view of stress, but the stress distribution is very similar for each wave load case.

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.

Effect of Water Depth on the Performance of a Direct Drive Turbine for Wave Energy Converter (파력발전용 직접구동터빈의 성능에 미치는 수심의 영향)

  • Choi, Young-Do;Kim, Chang-Goo;Cho, Young-Jin;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.38-45
    • /
    • 2008
  • Development of high efficiency turbine with good performance is one of the main topics in the field of developing wave energy converter. For the development and improvement of the turbine performance, the effect of wave condition on the turbine performance should be considered in detail. Also, water depth is an important factor because incident wave power to the turbine is considerably influenced by the wave particle amplitude of motion and the amplitude is closely related with the water depth. Therefore, in this study, the effect of water depth on the performance of a direct drive turbine(DDT) for wave energy converter is investigated using the DDT which is installed in two types of wave channel. The experimental results show that the DDT captures more wave energy under the condition of relatively shallow water depth. When the water depth is shallow, the horizontal water particle amplitude of motion becomes wider and thus, the water power toward the turbine becomes larger.

Anodal Effects of Transcranial Direct Current Stimulation on the Excitability of Central Neuron (양극 경두개 직류 전기 자극이 중추신경원의 흥분성에 미치는 영향)

  • Lim, Young-Eun;Jung, Jin-Sun;Lee, Jeong-Woo
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.9 no.2
    • /
    • pp.19-24
    • /
    • 2011
  • Purpose : This study is to examine the effects of transcranial direct current stimulation on the excitability of the central neuron. Methods : This study selected 24 suitable women in their twenties. A positive electrode of transcranial direct current stimulation was placed on the primary motor area (M1) C4 and a negative electrode was placed on the left supraobital. A stimulation of 0.04mA/$cm^2$ was applied for 20 minutes. H-reflex and V wave used diagnostic electromyography. An active electrode was placed at the muscle belly of the medial gastrocnemius muscle at a prone posture. An electrical stimulation was given to the posterior tibial nerve. Measurements were made before and after the stimulation. All data were analyzed with SPSS 12.0 and between each measuring before and after the change of the H-reflex and V wave amplitude. Results : There were no significant differences in all H wave, M wave, and V wave amplitude before and after transcranial direct current stimulation. There were no significant differences in the change of H/M ratio and V/M ratio before and after transcranial direct current stimulation. Conclusion : We know that transcranial direct current stimulation cannot have an influence on a normal grown-up person's central neuron.

Design of mulimeter-wave ultra-compact broadband MMIC amplifiers (밀리미터파 초소형 광대역 MMIC 증폭기 설계에 관한 연구)

  • 권영우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1733-1739
    • /
    • 1997
  • An ultra-compact milimeter-wave broadband MMIC amplifier was designed using a direct-coupled topology combined with optimum feedback design. Significant reductionin the chip size was possible by employing the direct-coupled topology. Bias resistors required for the direct-coupled topology were also used as feedback elements. Feedback was optimized for millimeter-wave frequencies using reactive elements. The fabricated MMIC amplifier was realized in a chip size of 0.8mm$^{[-992]}$ and showed gains higher than 8 dB from 12 to 44 GHz. An output power of 30mW was achieved at 44 GHz with a drain efficiency of 10%.

  • PDF

Analysis of Resource Assignment for Directional Multihop Communications in mm-Wave WPANs

  • Kim, Meejoung;Hong, Seung-Eun;Kim, Yongsun;Kim, Jinkyeong
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.120-130
    • /
    • 2013
  • This paper presents an analysis of resource assignment for multihop communications in millimeter-wave (mm-wave) wireless personal area networks. The purpose of this paper is to figure out the effect of using directional antennas and relaying devices (DEVs) in communications. The analysis is performed based on a grouping algorithm, categorization of the flows, and the relaying DEV selection policy. Three schemes are compared: direct and relaying concurrent transmission (DRCT), direct concurrent transmission (DCT), and direct nonconcurrent transmission (DNCT). Numerical results show that DRCT is better than DCT and DCT is better than DNCT for any antenna beamwidths under the proposed algorithm and policy. The results also show that using relaying DEVs increases the throughput up to 30% and that there is an optimal beamwidth that maximizes spatial reuse and depends on parameters such as the number of flows in the networks. This analysis can provide guidelines for improving the performance of mm-wave band communications with relaying DEVs.

Design of Floating Type Wave Energy Convertor with Direct Drive Turbine (파랑을 이용한 부유식 직접 구동 터빈의 설계)

  • Choi, HyenJun;Choi, JongWoong;Kim, ChangGoo;Lee, YoungHo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.165.2-165.2
    • /
    • 2011
  • Dye to recent development such as increasing price of fossil fuels and energy offers such a solution. Wave energy supplies. Weve energy offers such a solution. Wave energy is the most consistent of all the intermittent renewable energy sources. In addition to this, very large energy fluxes occur in the ocean waves and by using appropriate wave energy converters the energy can be harnessed. The present study looks at utilizing a direct drive turbine of cross flow type to extract energy from ocean waves indirectly. This novel design incorporates a turbine in an enclosed in a closed tank. utilizing the energy generated from sloshing.

  • PDF

Numerical Analysis on the Effect of Long-crested Wave to the RCS of Marine Target (장파봉파가 해상표적의 RCS에 미치는 영향에 대한 수치해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong;Lee, Jeong-Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.384-391
    • /
    • 2006
  • RCS effects of long-crested wave surfaces to marine targets are numerically analyzed using a 4-path model and a direct analysis method, developed based on physical optics and a combined method of physical optics/geometric optics, respectively. Reflectivity of long-crested wave surfaces is described with 'Fresnel reflection coefficients' The MPM(modified Pierson-Moskowitz) ocean spectrum is adopted to simulate long-crested waves in the direct analysis method. A numerical analysis of a benchmark model assures the validity of both methods. The direct analysis method is applied to the RCS calculation of electromagnetically large marine targets, which are vertically oriented or slanted to the long crested wave surfaces randomly generated with various significant wave heights. The long-crested wave surface much highly increases the RCS of the marine target, but those effects are decreased as the significant wave height grows up. At low elevation angle, the vertical model has entirely high RCS comparing slanted model, and the RCS of vertical flat plate is the highest on the calm sea surface, while those of slanted flat plates are the lowest on the calm sea surface. The RCS of marine targets on continuously-varying sea surface is more coherent at lower elevation angles, as well.

The Change of Hair Physical and Mechanical Properties according to Permanent Wave Treatment Method (퍼머넌트 웨이브 시술방법에 따른 모발의 물리적·역학적 특성 변화)

  • Yoo, Tae-Soon;Kim, Jung-Hae;Jung, Youn
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.441-448
    • /
    • 2006
  • This research is the hair damage as treating a permanent wave before and after that is compared and analyzed the change of physical and mechanical properties. This is the survey of women's hair in 20 years old. On the basis of this we would like to analyze a extend of hair damage. Also, we would to show a basic data for hair damage prevention and hair improvement to keep the beautiful and healthy hair. The conclusion is as follow. : The swelling degree after the treatment was found to be greater than before permanent wave treatment. For the formational characteristics wave, untreated hair certainly had more elastic S curl wave than damaged hair in all the permanent wave treatments, and damaged hair and extremely damaged hair had less elasticity and had saggy S curl wave. The protein permanent and soft permanent wave had thicker, gorgeous, and better elastic wave than the regular permanent wave and direct heating permanent wave in all the hair condition. As the degree of damage on hair got greater, the tensile strength dramatically decreased and as the degree of damage got greater, the elongation was great as well. For treatment method, direct heating permanent wave showed the greatest effect, causing the most damage.