• Title/Summary/Keyword: Direct torque control (DTC)

Search Result 153, Processing Time 0.022 seconds

Model Following Sliding-Mode Control of a Six-Phase Induction Motor Drive

  • Abjadi, Navid R.;Markadeh, Gholamreza Arab;Soltan, Jafar
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.694-701
    • /
    • 2010
  • In this paper an effective direct torque control (DTC) and stator flux control is developed for a quasi six-phase induction motor (QIM) drive with sinusoidally distributed windings. Combining sliding-mode (SM) control and adaptive input-output feedback linearization, a nonlinear controller is designed in the stationary reference frame, which is capable of tracking control of the stator flux and torque independently. The motor controllers are designed in order to track a desired second order linear reference model in spite of motor resistances mismatching. The effectiveness and capability of the proposed method is shown by practical results obtained for a QIM supplied from a voltage source inverter (VSI).

Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load (과전류 부하에서 5상 농형 유도전동기의 정수 특성)

  • Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

AN OBSERVER-BASED DTC OF INDUCTION MOTORS DRIVEN BY 3-LEVEL INVERTER FOR IMPROVING LOW SPEED OPERATION (3 레벨 인버터로 구동되는 유도전동기 직접 토크제어의 저속운전 성능 개선)

  • Yun, J.H.;Choi, S.K.;Lee, S.H.;Lee, K.B.;Yoo, J.Y.;Song, J.H.;Choi, I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1030-1032
    • /
    • 2000
  • Direct torque control algorithm for 3-level inverter-fed induction motors is proposed. Conventional selection method of the stator voltage vector shows problems of stator flux drooping phenomenon and undesirable torque control appeared especially at the low, speed operation. To overcome these problems, a proposed method uses intermediate voltage vectors, which are inherently generated in 3-level inverters. An adaptive observer is also employed to estimate some state-variables and motor parameters, which takes a deep effect on the performance of the low speed operation. Simulation and experiment results verify effectiveness of the proposed algorithm.

  • PDF

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Development, Implementation and Experimentation on a dSPACE DS1104 of a Direct Voltage Control Scheme

  • Hmidet, Ali;Dhifaoui, Rachid;Hasnaoui, Othman
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-476
    • /
    • 2010
  • This paper proposes and develops a new direct voltage control (DVC) approach. This method is designed to be applied in various applications for AC drives fed with a three-phase voltage source inverter (VSI) working with a constant switching time interval as in the standard direct torque control (DTC) scheme. Based on a very strong min(max) criterion dedicated to selecting the inverter voltage vector, the developed DVC scheme allows the generation of accurate voltage forms of waves. The DVC algorithm is implemented on a dSPACE DS1104 controller board and then compared with the space vector pulse width modulation technique (SVPWM) in an open loop AC drive circuit. To demonstrate the efficiency of the developed algorithm in real time and in closed loop AC drive applications, a scalar control scheme for induction motors is successfully implemented and experimentally studied. Practical results prove the excellent performance of the proposed control approach.

Model Predictive Control for Induction Motor Drives Fed by a Matrix Converter (매트릭스 컨버터로 구동되는 유도전동기의 직접토크제어를 위한 모델예측제어 기반의 SVM 기법)

  • Choi, Woo Jin;Lee, Eunsil;Song, Joong-Ho;Lee, Young-Il;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.900-907
    • /
    • 2014
  • This paper proposes a MPC (Model Predictive Control) method for the torque and flux controls of induction motor. The proposed MPC method selects the optimized voltage vector for the matrix converter control using the predictive modeling equation of the induction motor and cost function. Hence, the reference voltage vector that minimizes the cost function of the torque and flux error within the control period is selected and applied to the actual system. As a result, it is possible to perform the torque and flux control of induction motor using only the MPC controller without a PI (Proportional-Integral) or hysteresis controller. Even though the proposed control algorithm is more complicated and has lots of computations compared with the conventional MPC, it can perform torque ripple reduction by synthesizing voltage vectors of various magnitude. This feature provides the reduction of amount of calculations and the improvement of the control performance through the adjustment of the number of the unit vectors n. The proposed control method is validated through the PSIM simulation.

Parameters Estimation of Five-phase Squirrel-Cage Induction Motor (5상 농형 유도전동기의 정수 추정)

  • Kim, Min-Huei
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.199-205
    • /
    • 2012
  • This paper propose a improved parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system on field oriented control(FOC). In order to high performance control of ac the motors using a FOC and DTC(direct torque control) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position and speed estimation, and so on. We are suggest a estimation method of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental. There are results of stator winding test, no-load test, locked rotor test, and obtained equivalent circuits using manufactured experimental apparatus. For presenting the superior performance of the speed control system in adapted the parameters, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] IM.

Parameters Estimation of Five-Phase Squirrel-Cage Induction Motor in Changing Variable Frequency (주파수 변화에 따른 5상 농형 유도전동기의 정수 추정)

  • Kim, Min-Huei
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.241-247
    • /
    • 2014
  • This paper propose a variable parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental of variable input power frequency. There are results of stator winding test, no-load test, locked-rotor test, variable actual load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

Analysis of Sensor Fault Effect in Induction Motor Drives (유도전동기 드라이브 시스템에서 센서 고장효과 분석)

  • 이기상;류지수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.126-133
    • /
    • 2003
  • High performance induction motor drives are driven by two advanced control methods: vector control and direct torque control (DTC). In order to apply the control methods to the speed/position control systems, the informations on rotor speed and rotor or stator flux are required. The speed is measured by encoder, and the rotor or stator flux is estimated by using the motor parameters and measured currents. The control input generated on the basis of the information that is provided by abnormal sensors should be far from the desired value and deteriorates the overall control perfonnance. In this paper, the effects of sensor faults on the motor variables and the control performance of induction motor drives are analyzed by both theoretical approach and simulation study. The presented analysis results could be utilized for the purpose of developing a fault detection and isolation scheme in induction motor drives.

A Parameters Estimation of Five-phase Induction Motor (5상 유도전동기의 파라미터 추정)

  • Kim, Nam-Hun;Baik, Won-Sik;Kim, Min-Huei;Jung, Hyung-Woo;Kim, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.55-56
    • /
    • 2010
  • 다상 유도 전동기(Multi phase induction motor)의 고성능 제어를 수행하기 위해서는 정확한 파라미터 계산이 필수적이다. 특히 전동기의 벡터제어(FOC, Field oriented control)나 직접토크제어(DTC, Direct torque control)와 같은 고성능 제어 시스템의 경우, 슬립 계산이나 자속관측기 그리고 PI 제어기 게인 추정에서 전동기 상수들이 필수적으로 사용된다. 본 논문에서는 실험용으로 집중권(Concentrated winding) 구조를 가지는 2kW, 5상 유도전동기를 제작하였으며, 5상 유도전동기 파라미터 추정에 대한 방법을 제시하였다. 일반적으로 다상 유도전동기의 경우 1차 공간 고조파(1st space harmonic) 성분에 대한 파라미터만을 추정하여 제어에 사용하지만, 본 논문에서는 1차 공간 고조파 성분과 3차 공간 고조파(3rd space harmonic) 성분에 대한 파라미터 추정 방법을 제시한다. 결과적으로 제안된 파라미터 추정 방법의 타당성을 확인하기 위해서 설계값과 실험값을 비교하였다.

  • PDF