• Title/Summary/Keyword: Direct subcortical stimulation

Search Result 3, Processing Time 0.018 seconds

Technical Considerations of Effective Direct Cortical and Subcortical Stimulation (효과적인 대뇌 직접피질자극 검사 및 피질하자극 검사의 술기에 관한 기술적 고찰)

  • Lim, Sung Hyuk;Jang, Min Hwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.157-162
    • /
    • 2022
  • The purpose of the direct cortical and subcortical stimulation technique is to prevent false positives caused by transcranial electrical motor evoked potentials (TceMEP) in surgery on patients with brain tumors that have occurred around the motor cortex and to preserve the correct mapping of motor areas during surgery and the corticospinal tract. In addition, it reduces the trial and error that occurs during the intraoperative neurophysiological monitoring (INM) process and minimizes the test time, so that accurate information is communicated to the surgeon with quick feedback on the test results. The most important factors of this technique are, first, examination at a stimulus threshold of a certain intensity, and second, maintaining anesthesia depth at an appropriate level to prevent false positives from occurring during surgery. The third is the installation of a multi-level channel recording electrode on the opposite side of the area of operation to measure the TceMEP waveform and the response to direct cortical and subcortical stimulation in as many muscles as possible. If these conditions are maintained, it is possible to predict causes that may occur in other factors, not false positives, from the INM test.

Identification of M-1, S-1 Cortex Using Combined Intraoperative SEP and Cortical Stimulation - A Case Report - (수술중 체성감각 유발전위 및 대뇌피질 자극을 이용한 일차 운동피질영역과 일차 감각피질영역의 확인 - 증례보고 -)

  • Lee, Jae-Uhn;Son, Byung-Chul;Kim, Moon-Chan;Kang, Joon-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.954-958
    • /
    • 2000
  • In the removal of small subcortical lesion in the eloquent area like sensory-motor cortex, the prevention of neurologic deficit is important. We present our technique of identification of M-1, S-1 cortex in a case of subcortical granuloma located in sensorymotor cortex. To accurately localize mass, stereotactic craniotomy was planned. At the beginning of procedure, functional MRI of motor cortex was done with stereotactic headframe in place. Next, the stereotactic craniotomy about 4 cm was done under propofol anesthesia for cortical mapping. After reflection of dura, central sulcus was identified with phase-reversal response of intraoperative SEP(somatosensory evoked potential) of contralateral median nerve. Then the patient was awakened, and direct cortical stimulation was done. We observed the muscle contractions of elbow, hand and fingers and the paresthesia over forearm, hand, fingers on the M-1 and S-1 cortex. Through cortical mapping and stereotactic guidance, we concluded that the mass lie immediately posterior to central sulcus, then the mass was carefully removed through small transsulcal approach, opening about 1 cm of rolandic sulcus.

  • PDF

Intraoperative Neurophysiological Monitoring : A Review of Techniques Used for Brain Tumor Surgery in Children

  • Kim, Keewon;Cho, Charles;Bang, Moon-suk;Shin, Hyung-ik;Phi, Ji-Hoon;Kim, Seung-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.363-375
    • /
    • 2018
  • Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal age-adjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar motor evoked potentials could be combined to prevent injury of the cranial nerves or nucleus. IOM for cerebral tumors can adopt direct cortical stimulation or direct subcortical stimulation to map the corticospinal pathways in the vicinity of lesion. IOM is a diagnostic as well as interventional tool for neurosurgery. To prove clinical evidence of it is not simple. Randomized controlled prospective studies may not be possible due to ethical reasons. However, prospective longitudinal studies confirming prognostic value of IOM are available. Furthermore, oncological outcome has also been shown to be superior in some brain tumors, with IOM. New methodologies of IOM are being developed and clinically applied. This review establishes a composite view of techniques used today, noting differences between adult and pediatric monitoring.