• Title/Summary/Keyword: Direct solar

Search Result 416, Processing Time 0.032 seconds

Performance Analysis of Combined Passive Solar System for Building South Wall (남측외벽에 적용한 혼합형 태양열시스템의 성능 분석)

  • Yun, Tae-Gyun;Lee, Hyun-Soo;Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.42-49
    • /
    • 2012
  • In this article, the author carried out a theoretical study on the application techniques of a new Combined Passive Solar System (hereinafter referred to as the CPSS) of direct gain and trombe walls to get quick morning heating and to prevent afternoon overheating for office building. The numerical model proposed in this study can be used for the performance analysis of the CPSS in the winter and summer. Heating and Cooling loads are analysed for building energy consumption reduction using this numerical model. The results indicate that CPSS in the winter and summer modes could provide profitable conditions for improvement of indoor thermal comfort control and energy saving. consequently, the application of CPSS will not lead to significant reductions in the auxiliary air conditioning demand but also realize the environmentally friendly building.

Low-Temperature Solution Process of Al-Doped ZnO Nanoflakes for Flexible Perovskite Solar Cells

  • Nam, SeongSik;Vu, Trung Kien;Le, Duc Thang;Oh, Ilwhan
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.118-125
    • /
    • 2018
  • Herein we report on the selective synthesis and direct growth of nanostructures using an aqueous chemical growth route. Specifically, Al-doped ZnO (AZO) nanoflakes (NFs) are vertically grown on indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) sheets at low temperature and ambient environment. The morphological, optical, and electrical properties of the NFs are investigated as a function of the Al content. Furthermore, these AZO-NFs are integrated into perovskite solar devices as the electron transport layer (ETL) and the fabricated devices are tested for photovoltaic performance. It was determined that the doping of AZO-NFs significantly increases the performance metrics of the solar cells, mainly by increasing the short-circuit current of the devices. The observed enhancement is primarily attributed to the improved conductivity of the doped AZO-NF, which facilitates charge separation and reduces recombination. Further, our flexible solar cells fabricated through this low temperature process demonstrate an acceptable reproducibility and stability when exposed to a mechanical bending test.

Study on the Heat Collecting Performance of Flat-Plate Solar Collector by the angle (평판형 태양열 집열기의 각도에 따른 집열성능 연구)

  • Ji, M.K.;Kong, T.W.;Bae, C.W.;Jeong, H.M.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.316-321
    • /
    • 2000
  • In this study, heat collecting performance was study of flat plate solar collector by the angle. A method of study on were made turn out artificial sun by the angle of 0, 15, 30 degrees. The heat performances were measured the tube array surface temperature by thermo-couple. The winter season natural condition for 4 times on the angles of various general and emboss glass at optimum distance(0.68m) calculated of between sun and solar collector. To sum up temperature rise is appear more or less that emboss glass is all the better for general glass. The temperature variable at below of 30 degree was appear very less. The maximum performance of this system at that it is tilt angle of 30 with general glass is appear Q:11.54(kcal/min) and ${\Delta}T=18.9^{\circ}C$.

  • PDF

Investigations on Microcrystalline Silicon Films for Solar Cell Application

  • Hwang, Hae-Sook;Park, Min-Gyu;Ruh, Hyun;Yu, Hyun-Ung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2909-2912
    • /
    • 2010
  • Hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin film for solar cells is prepared by plasma-enhanced chemical vapor deposition and physical properties of the ${\mu}c$-Si:H p-layer has been investigated. With respect to stable efficiency, this film is expected to surpass the performance of conventional amorphous silicon based solar cells and very soon be a close competitor to other thin film photovoltaic materials. Silicon in various structural forms has a direct effect on the efficiency of solar cell devices with different electron mobility and photon conversion. A Raman microscope is adopted to study the degree of crystallinity of Si film by analyzing the integrated intensity peaks at 480, 510 and $520\;cm^{-1}$, which corresponds to the amorphous phase (a-Si:H), microcrystalline (${\mu}c$-Si:H) and large crystals (c-Si), respectively. The crystal volume fraction is calculated from the ratio of the crystalline and the amorphous phase. The results are compared with high-resolution transmission electron microscopy (HR-TEM) for the determination of crystallinity factor. Optical properties such as refractive index, extinction coefficient, and band gap are studied with reflectance spectra.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

Correlation Analysis between solar power generation and weather variables (태양광 발전량과 기상변수간 상관관계 분석)

  • Yoo, Hyun-jae;Gong, Seung-jun;Kim, Jong-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.704-706
    • /
    • 2022
  • In this study, we analyzed the correlation between the amount of photovoltaic power generation and the factors of meteorological changes. A total of 52,561 data were used in the correlation analysis from January 2018 to January 2020, and the variables used in the correlation analysis were time, horizontal plane scattering solar radiation, direct solar radiation, wind velocity, and relative humidity. The temperature was used. Based on this data, we used the Google Colab platform to analyze the correlation, and the analysis revealed whether there was a correlation between solar power and meteorological change factors.

  • PDF

Utility Interactive Photovoltaic Generation System using PWM Current Source Inverter (PWM 전류형인버터를 이용한 계통연계형 태양광 발전시스템)

  • 박춘우;성낙규;이승환;강승욱;이훈구;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.109-112
    • /
    • 1996
  • In this paper, we composed utility interactive photovoltaic generation system of current source inverter, and controlled that low harmonic and high power factor are hold by supposing control and compensation method which is concerned with synchronous signal distortion and modulation delay. And we put parallel resonant circuit into dc link, so, magnitude of direct reactance was reduce by restraining direct current pulsation which had accumulation of pulsating power in alternating electrolytic condenser. Also we controlled that modulation factor is operated around maximum output of solar cell.

  • PDF

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

Effect of Aerosol Feedback on Solar Radiation in the Korean Peninsula Using WRF-CMAQ Two-way Coupled Model (WRF-CMAQ 결합모델을 이용한 에어로졸 피드백 효과가 한반도 일사량에 미치는 영향 연구)

  • Yoo, Jung-Woo;Park, Soon-Young;Jeon, WonBae;Kim, Dong-Hyeok;Lee, HwaWoon;Lee, Soon-Hwan;Kim, Hyun-Goo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.435-444
    • /
    • 2017
  • In this study, we investigated the effect of aerosol feedback on $PM_{10}$ simulation using a two-way coupled air quality model (WRF-CMAQ). $PM_{10}$ concentration over Korea in January 2014 was simulated, and the aerosol feedback effect on the simulated solar radiation was intensively examined. Two $PM_{10}$ simulations were conducted using the WRF-CMAQ model with (FB) and without(NFB) the aerosol feedback option. We find that the simulated solar radiation in the west part of Korea decreased by up to $-80MJ/m^2$ due to the aerosol feedback effect. The feedback effect was significant in the west part of Korea, showing high $PM_{10}$ estimates due to dense emissions and its long-range transport from China. The aerosol feedback effect contributed to the decreased rRMSE(relative Root Mean Square Error) for solar radiation (47.58% to 30.75%). Aerosol feedback effect on the simulated solar radiation was mainly affected by concentration of $PM_{10}$. Moreover, FB better matched the observed solar radiation and $PM_{10}$ concentration than NFB, implying that taking into account the aerosol direct effects resulted in the improved modeling performance. These results indicate that aerosol feedback effects can play an important role in the simulation of solar radiation over Korean Peninsula.

Study of Stirling Engine Receiver for Solar Thermal Power (태양열 발전용 스터링엔진 흡수기 특성연구)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.227-232
    • /
    • 2008
  • Stirling engine for solar thermal power is an essential part of Dish-Stirling system which generates electricity by using direct normal irradiation and will go into commercialization in near future. For the Stirling engine used in this study is Solo 161 model the capacity of which is 10 kWe and was already used for the Dish-Stirling system of KIER in Jinhae. The receiver of Stirling engine absorbes concentrated solar radiation and transfer it to working fluid of Hydrogen. The working condition of striling engine is high temperature and high pressure to make high efficiency. Therefore the receiver should stand against high temperature of above 800 $^{\circ}C$ and high pressure of max. 150 bar with good performance of heat transfer. The receiver is composed of 78 Inconel tubes of 1/8" with thickness of 0.71 mm and two reserviors which is connected with two cylinders. In order to know the charaterristics of heat transfer of Stirling engine receiver, simulation on the heat transfer of the receiver of Solo 161 is conducted by using CFD code of Fluent. The heat flux on the receiver surface has a shape of Gaussian distribution so, it is necessary to simulate a whole receiver. However, It is difficult and time consuming to simulate the whole receiver that one tube with different heat flux conditions are considered in this study. From the simulation results, heat transfer charateristics of receiver are observed and tube wall and fluid temperature and heat transfer coefficient are obtained and compared with the calculated results from Dittus-Boelter's correlation.

  • PDF