Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.2.118

Low-Temperature Solution Process of Al-Doped ZnO Nanoflakes for Flexible Perovskite Solar Cells  

Nam, SeongSik (Department of IT Convergence Engineering, Kumoh National Institute of Technology)
Vu, Trung Kien (Department of IT Convergence Engineering, Kumoh National Institute of Technology)
Le, Duc Thang (Department of Applied Chemistry, Kumoh National Institute of Technology)
Oh, Ilwhan (Department of Applied Chemistry, Kumoh National Institute of Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.2, 2018 , pp. 118-125 More about this Journal
Abstract
Herein we report on the selective synthesis and direct growth of nanostructures using an aqueous chemical growth route. Specifically, Al-doped ZnO (AZO) nanoflakes (NFs) are vertically grown on indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) sheets at low temperature and ambient environment. The morphological, optical, and electrical properties of the NFs are investigated as a function of the Al content. Furthermore, these AZO-NFs are integrated into perovskite solar devices as the electron transport layer (ETL) and the fabricated devices are tested for photovoltaic performance. It was determined that the doping of AZO-NFs significantly increases the performance metrics of the solar cells, mainly by increasing the short-circuit current of the devices. The observed enhancement is primarily attributed to the improved conductivity of the doped AZO-NF, which facilitates charge separation and reduces recombination. Further, our flexible solar cells fabricated through this low temperature process demonstrate an acceptable reproducibility and stability when exposed to a mechanical bending test.
Keywords
Solution process; Perovskite solar cells; ZnO nanoflakes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.-Y. Son, K.-H. Bae, H.-S. Kim, and N.-G. Park, J. Phys. Chem. C., 2015, 119(19), 10321-10328.   DOI
2 K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, et al., Sci Rep, 2014, 4, 6071.
3 C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, J Phys Chem Lett, 2014, 5(89), 1300-1306.   DOI
4 X. Y. Xue, L. M. Li, H. C. Yu, Y. J. Chen, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett., 2006, 89(4), 043118.   DOI
5 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, et al., Science, 2015, 348(6240), 1234-1237.   DOI
6 P. F. Yin, T. Ling, Y. R. Lu, Z. W. Xu, S. Z. Qiao, and X. W. Du, Adv. Mater, 2015, 27(4), 740-745.   DOI
7 S. Yun, J. Lee, J. Yang, and S. Lim, Physica B Condens Matter, 2010, 405(1), 413-419.   DOI
8 J. Zhang, P. Barboux, and T. Pauporte, Adv. Energ. Mater., 2014, 4(18), 1400932.   DOI
9 C. Zhao, J. Zhang, Y. Hu, N. Robertson, P. A. Hu, D. Child, et al., Sci. Rep., 2015, 5, 17750.
10 H. J. Snaith, J Phys Chem Lett, 2013, 4(21), 3623-3630.   DOI
11 J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., Nature, 2013, 499(7458), 316.   DOI
12 S. Aharon, S. Gamliel, B. E. Cohen, and L. Etgar, Phys Chem. Chem. Phys., 2014, 16(22), 10512-10518.   DOI
13 S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, J. Phys. Chem. B, 2005, 109(7), 2526-2531.   DOI
14 D. Bi, G. Boschloo, S. Schwarzmuller, L. Yang, E. M. J. Johansson, and A. Hagfeldt, Nanoscale, 2013, 5(23), 11686-11691.   DOI
15 N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, Chem Mater, 2010, 22, 4769-4775.   DOI
16 A. Dymshits, L. Iagher, and L. Etgar, Materials, 2016, 9(1), 60.   DOI
17 X. Fan, G. Fang, S. Guo, N. Liu, H. Gao, P. Qin, et al., Nanoscale Res Lett, 2011, 6(1), 546.   DOI
18 P. Gao, M. Gratzel, and M. K. Nazeeruddin, ENERG ENVIRON SCI, 2014, 7(8), 2448-2463.   DOI
19 M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photo, 2014, 8(7), 506.   DOI
20 M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, et al., Energ Environ. Sci., 2012, 5, 9881-9888.   DOI
21 M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, et al., Chem. Commun, 2013, 49(94), 11089-11091.   DOI
22 M. T. Hoang, N. D. Pham, J. H. Han, J. M. Gardner, and I. Oh, ACS Appl. Mater., 2016, 8(19), 11904-11909.   DOI
23 Y. V. Kaneti, J. Yue, X. Jiang, and A. Yu, J. Phys. Chem. C., 2013, 117(25), 13153-13162.   DOI
24 S. Kazim, M. K. Nazeeruddin, M. Gratzel, and S. Ahmad, Angew, Chem. Int. Ed, 2014, 53, 2812-2824.   DOI
25 W. A. Laban and L. Etgar, ENERG ENVIRON SCI, 2013, 6(11), 3249-3253.   DOI
26 H. Li, S. Jiao, H. Li, and L. Li, J. Mater. Sci. Mater. Ele, 2014, 25(6), 2569-2573.   DOI
27 D. Liu, M. K. Gangishetty, and T. L. Kelly, J Mater Chem A, 2014, 2(46), 19873-19881.   DOI
28 D. Liu, T. L. Kelly, Nat. Photo, 2014, 8, 133.   DOI
29 D. Liu, J. Yang, and T. L. Kelly, J. Am. Chem. Soc., 2014, 136(49), 17116-17122.   DOI
30 K. Mahmood, B. S. Swain, and A. Amassian, Adv. Mater, 2015, 27(18), 2859-2865.   DOI
31 F. J. Ramos, M. C. Lopez Santos, E. Guillen, M. K. Nazeeruddin, M. Gratzel, A. R. Gonzalez Elipe, et al., Chem. Phys. Chem., 2014, 15(6), 1148-1153.   DOI
32 P. Roy, S. Berger, and P. Schmuki, Angew, Chem. Int. Ed., 2011, 50(13), 2904-2939.   DOI
33 X. Sheng, D. He, J. Yang, K. Zhu, and X. Feng, Nano Lett., 2014, 14(4), 1848-1852.   DOI
34 J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, et al., Appl. Phys. Lett., 2014, 104(6), 063901.   DOI
35 K.-S. Shin, K.-H. Lee, H. H. Lee, D. Choi, and S.-W. Kim, J. Phys. Chem. C., 2010, 114(37), 15782-15785.   DOI
36 J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong, S. Lv, et al., ACS Appl. Mater., 2014, 6(12), 9711-9718.   DOI