• Title/Summary/Keyword: Direct fuzzy control

Search Result 116, Processing Time 0.03 seconds

Design and implementationof a fuzzy tuning discrete-time repetitive controller for a direct drive robot (직접구동형 로봇에 대한 퍼지 튜닝 이산시간 반복제어기의 설계 및 실시간 구현)

  • 김성현;김진현;안현식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.76-85
    • /
    • 1998
  • In this paper, a fuzzy tuning method of a control gain in the discrete-time repetitive controller is proposed for precise tracking control of a system whose reference signal is repetitive. The control gain is modified by fuzzy rules which use the magnitude and the variation ofthe maximum output error in the previous repetitive period. The proposed method is applied to a direct drive 2-axis SCARA-type robot and, it is illustratedby computer simulations and real-time experimentation that better performance can be obtained that the fixed gain-based repetitive controller.

  • PDF

A New Design of Fuzzy controller for HVDC system with the aid of GAs (HVDC 시스템에 대한 유전자 알고리즘을 사용한 새로운 퍼지 제어기의 설계)

  • Wang Zhong-Xian;Yang Jueng-Je;Rho Seok-Beom;Ahn Tae-Chon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.221-226
    • /
    • 2006
  • In this paper, we study an approach to design a Fuzzy PI controller in HVDC(High Voltage Direct Current) system. In the rectifier of traditional HVDC system, turning on, turning off, triggering and protections of thyristors have lots of problems that can make the dynamic instability and cannot damp the dynamic disturbance efficiently. In order to solve the above problems, we adapt Fuzzy PI controller for the fire angle control of rectifier. The performance of the Fuzzy PI controller is sensitive to the variety of scaling factors. The design procedure dwells on the use of evolutionary computing(Genetic Algorithms, GAs). Then we can obtain factors of the Fuzzy PI controller by Genetic Algorithms. A comparative study has been performed between Fuzzy PI controller and traditional PI controller, to prove the superiority of the proposed scheme.

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada;Miloud, Yahia;Miloudi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.451-461
    • /
    • 2010
  • Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.

New Fuzzy Variable Switching Sector Technique for DTC on Induction Motor Drives (유도전동기 직접토크제어를 위한 새로운 퍼지 가변 스위칭섹터 기법)

  • 柳 志 帥;洪 淳 瓚;李 起 常
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.137-148
    • /
    • 2002
  • Direct Torque Control(DTC) is considered to be an useful control scheme of high performance induction motor drives because the scheme provides a quick torque response without requiring the complex field-orientation block and inner current regulation loop. Among a few drawbacks of the conventional DTC scheme, large current harmonics due to flux drooping phenomenon in a low speed range may be the major difficulty In order to remove the difficulty, a fuzzy variable switching sector scheme and its real-time implementation algorithm are proposed in this paper. A DSP based control board is designed for the Induction motor drives with the DTC scheme including the fuzzy switching sector algorithm. Simulation and experimental results show the effectiveness of the proposed scheme.

Development of a Pneumatic Servomechanism Using a Direct-connected Circuit between Inlet and Outlet and Its Application to the Design of a Fuzzy Position Controller for a Fingering System (흡배기구 직결회로를 이용한 공압 서보장치의 개발과 집게 시스템용 퍼지제어기 설계)

  • Choi, Kap-Yong;Choi, In-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.593-608
    • /
    • 1995
  • In this study two issues are considered, one is to develop a pneumatic servomechanism using a direct-connected circuit between inlet and outlet, the other is to design two kinds of advanced controllers such as fuzzy and PID controllers for a fingering system. Besides, the application of the advanced controllers to the newly proposed servomechanism is presented. The procedure of this study is composed of following 6 steps : [Step 1] Structuring of a control system; [Step 2] Development of a pneumatic circuit for the servomechanism ; [Step 3] Characteristic analysis of the valve and cylinder systems ; [Step 4] Determination of optimal parameters of the PID controller ; [Step 5] Design of a fuzzy controller and parameter tuning; and, [Step 6] Experimental analysis of fuzzy and PID controllers. Experimental results show that the newly proposed pneumatic servomechanism has good performance and, not only the performance of the fuzzy controller is better than that of the PID controller but also the fuzzy controller fits well to the control of the pneumatic servomechanism.

  • PDF

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

A Study on Fuzzy Temperature Control for the Barrels of Injection Molding Machine using PC based PLC (PC 기반 PLC를 이용한 사출성형기 배럴의 퍼지 온도 제어에 관한 연구)

  • 김훈모
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.768-773
    • /
    • 2003
  • Injection molding has been widely used for the mass production of a plastic product. With the development of the relative technique, various injection molding techniques have been developed and we could get more precise plastic product. The temperature of a melting resin is an important factor in the injection molding and this temperature has direct influence on the quality of a plastic product. In the present injection molding machine, the deriation of a temperature controlled by PID control method is within 2$^{\circ}C$ in the injection molding machine but PID control method takes too much time to stabilize after preheating and its overshoot is so big. We applied fuzzy control to alleriate the problem. In this research, we experimented the fuzzy temperature control with the usage of PC based PLC.

Design of Control Logics for Improving Vehicle Dynamic Stability (차량 안정성 향상을 위한 제어기 설계)

  • 허승진;박기홍;이경수;나혁민;백인호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.165-172
    • /
    • 2000
  • The VDC(Vehicle Dynamic Control) is a control system whose target is to improve stability of a vehicle under lateral motion. A lateral vehicle motion, especially on a slippery road, can lead to a hazardous situation, and the situation can even worsen by the driver`s inappropriate response. In this paper, two VDC systems, a fuzzy-based controller and an LQR-based controller have been developed. The controllers take as input the yaw rate and the sideslip angle of either body or rear wheel, and they yield the direct yaw moment signal by which the vehicle can gain stability during cornering. Simulations have been conducted to evaluate the performance of the control system. The results indicated that the controllers can successfully improve vehicle stability under potentially dangerous driving conditions.

  • PDF

The Voltage Compensation Strategy of Distribution System Using the Ubiquitous-based Distributed Voltage Control Method (유비쿼터스 기반 분산 자율 전압 제어 방식에 의한 배전계통 전압 보상 전략)

  • Ko, Yun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1696-1702
    • /
    • 2008
  • This paper proposes a voltage compensation device direct control strategy to realize the distributed, autonomous voltage control of the distribution system, which based on voltage data collected from customers of the remote site under the ubiquitous-based distribution system. In the proposed method, The ULTC and the SVR(Step Voltage Regulator)s compensate autonomously the voltage for self-compensation area based on the voltage data furnished from the ubiquitous device of customers. Also, the SVRs overcome the limit of single-operation of ULTC by the interlocking operation with the ULTC and enhance the voltage compensation capability for the customer. In particular, an optimization design method and a fuzzy design method are compared to determine the effective control method of the voltage compensator under the ubiquitous-based on-line operation environments. In fuzzy method, the tap of voltage compensator is defined as output member. Finally, the proposed two methods are implemented in Visual C++ MFC, the effectiveness is proved by simulation based on the worst virtual voltage data. Also, an optimal voltage compensation strategy is determined under on-line environments based on analyzed results.

Control of Flexible Joint Robot Using Direct Adaptive Neural Networks Controller

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Kwi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • This paper is devoted to investigating direct adaptive neural control of nonlinear systems with uncertain or unknown dynamic models. In the direct adaptive neural networks control area, theoretical issues of the existing backpropagation-based adaptive neural networks control schemes. The major contribution is proposing the variable index control approach, which is of great significance in the control field, and applying it to derive new stable robust adaptive neural network control schemes. This new schemes possess inherent robustness to system model uncertainty, which is not required to satisfy any matching condition. To demonstrate the feasibility of the proposed leaning algorithms and direct adaptive neural networks control schemes, intensive computer simulations were conducted based on the flexible joint robot systems and functions.

  • PDF