• Title/Summary/Keyword: Direct etching

Search Result 136, Processing Time 0.029 seconds

Micromachining of Fused Silica by KrF Excimer Laser Induced Wet Etching (KrF 엑시머 레이저를 이용한 용융실리카의 미세 습식 식각가공)

  • 백병선;이종길;전병희;김헌영
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.601-607
    • /
    • 2002
  • Optically transparent materials such as fused silica, quartz and crystal have become important in the filed of optics and optoelectronics. Laser ablation continues to grow as an important technique for micromachining and surface modification of various materials, because many problems caused by direct contact between tools and workpiece can be avoided. Especially, laser ablation with excimer lasers enables fine micromachining of transparent materials such as fused silica, quartz and crystal, etc. In this study, laser-induced wet etching of fused silica in organic solution was conducted. KrF excimer laser was used as a light source and acetone solution of pyrene was used as etchant. Changing the number of laser pulses, micro holes of various depths are fabricated.

Fabrication of Colloid Thrusters using MEMS Technology

  • Park, Kun Joong;Song, Seung Jin;Sanchez, Manuel Martinez
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.588-592
    • /
    • 2004
  • This paper presents the preliminary fabrication results of colloid thrusters which can provide thrust of the order of micro to milli-Newtons. MEMS technology has been used for fabrication, and four essential fabrication techniques - deep etching with nested masks, isotropic plasma etching, anisotropic reactive ion etching, and direct fusion wafer bonding - have been newly developed. Among diverse models which have been designed and fabricated, the fabrication results of 4-inch wafer-based colloid thrusters are presented.

  • PDF

Laser Etching Characteristics of ITO/Ag/ITO Conductive Films on Forward/Reverse Sides of Flexible Substrates (플렉서블 기판 전/후면에서의 레이저를 이용한 ITO/Ag/ITO 전극층의 식각 특성)

  • Nam, Hanyeob;Kwon, Sang Jik;Cho, Eou-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.707-711
    • /
    • 2016
  • ITO/Ag/ITO conductive films on PET (polyethylene terephthalate) was etched by a Q-switched diode-pumped neodymiun-doped yttrium vanadate (Nd:YVO4, ${\lambda}=1064nm$) laser. During the laser direct etching, the laser beam was incident on the two different directions of PET and the etching patterns were investigated and analyzed. At a lower repetition rate of laser pulse, the larger laser etched patterns were obtained by laser beam incident on reverse side of PET substrate. On the contrary, at a higher repetition rate, it was possible to find the larger etched patterns in case of the laser beam incidence on forward side of PET substrate. For the laser beam incidence on reverse side, the laser beam is expected to be transferred and scattered through the PET substrate and the laser beam energy is thought to be dependent on the etch laser pulse beam energy.

Design and Fabrication of a Micro-Heat Pipe with High-Aspect-Ratio Microchannels (고세장비 미세채널 기반의 마이크로 히트파이프 설계 및 제조)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.164-173
    • /
    • 2006
  • The cooling capacity of a micro-heat pipe is mainly governed by the magnitude of capillary pressure induced in the wick structure. For microchannel wicks, a higher capillary pressure is achievable for narrower and deeper channels. In this study, a metallic micro-heat pipe adopting high-aspect-ratio microchannel wicks is fabricated. Micromachining of high-aspect-ratio microchannels is done using the laser-induced wet etching technique in which a focused laser beam irradiates the workpiece placed in a liquid etchant along a desired channel pattern. Because of the direct writing characteristic of the laser-induced wet etching method, no mask is necessary and the fabrication procedure is relatively simple. Deep microchannels of an aspect ratio close to 10 can be readily fabricated with little heat damage of the workpiece. The laser-induced wet etching process for the fabrication of high-aspect-ratio microchannels in 0.5mm thick stainless steel foil is presented in detail. The shape and size variations of microchannels with respect to the process variables, such as laser power, scanning speed, number of scans, and etchant concentration are closely examined. Also, the fabrication of a flat micro-heat pipe based on the high-aspect-ratio microchannels is demonstrated.

Etch characteristics of TiN thin film adding $Cl_2$ in $BCl_3$/Ar Plasma ($BCl_3$/Ar 플라즈마에서 $Cl_2$ 첨가에 따른 TiN 박막의 식각 특성)

  • Um, Doo-Seung;Kang, Chan-Min;Yang, Xue;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.168-168
    • /
    • 2008
  • Dimension of a transistor has rapidly shrunk to increase the speed of device and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate dioxide layer and low conductivity characteristic of poly-Si gate in nano-region. To cover these faults, study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$, and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-Si gate is not compatible with high-k materials for gate-insulator. Poly Si gate with high-k material has some problems such as gate depletion and dopant penetration problems. Therefore, new gate structure or materials that are compatible with high-k materials are also needed. TiN for metal/high-k gate stack is conductive enough to allow a good electrical connection and compatible with high-k materials. According to this trend, the study on dry etching of TiN for metal/high-k gate stack is needed. In this study, the investigations of the TiN etching characteristics were carried out using the inductively coupled $BCl_3$-based plasma system and adding $Cl_2$ gas. Dry etching of the TiN was studied by varying the etching parameters including $BCl_3$/Ar gas mixing ratio, RF power, DC-bias voltage to substrate, and $Cl_2$ gas addition. The plasmas were characterized by optical emission spectroscopy analysis. Scanning electron microscopy was used to investigate the etching profile.

  • PDF

Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials (직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구)

  • Kim, Hyun-Cheol;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.513-517
    • /
    • 2010
  • There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.

Parametric Study for a Diffraction Optics Fabrication by Using a Direct Laser Lithographic System (회절광학소자 제작을 위한 레이저 직접 노광기의 공정실험)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.845-850
    • /
    • 2016
  • A direct laser lithography system is widely used to fabricate various types of DOEs (Diffractive Optical Elements) including lenses made as CGH (Computer Generated Hologram). However, a parametric study that uniformly and precisely fabricates the diffractive patterns on a large area (up to $200mm{\times}200mm$) has not yet been reported. In this paper, four parameters (Focal Position Error, Intensity Variation of the Lithographic Beam, Patterning Speed, and Etching Time) were considered for stabilization of the direct laser lithography system, and the experimental results were presented.

Effects of Nozzle Locations on the Rarefied Gas Flows and Al Etch Rate in a Plasma Etcher (플라즈마 식각장치내 노즐의 위치에 따른 희박기체유동 및 알루미늄 식각률의 변화에 관한 연구)

  • 황영규;허중식
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1406-1418
    • /
    • 2002
  • The direct simulation Monte Carlo(DSMC) method is employed to calculate the etch rate on Al wafer. The etchant is assumed to be Cl$_2$. The etching process of an Al wafer in a helicon plasma etcher is examined by simulating molecular collisions of reactant and product. The flow field inside a plasma etch reactor is also simulated by the DSMC method fur a chlorine feed gas flow. The surface reaction on the Al wafer is simply modelled by one-step reaction: 3C1$_2$+2Allongrightarrow1 2AIC1$_3$. The gas flow inside the reactor is compared for six different nozzle locations. It is found that the flow field inside the reactor is affected by the nozzle locations. The Cl$_2$ number density on the wafer decreases as the nozzle location moves toward the side of the reactor. Also, the present numerical results show that the nozzle location 1, which is at the top of the reactor chamber, produces a higher etch rate.

Micromachinng and Fabrication of Thin Filmes for MEMS-infrarad Detectors

  • Hoang, Geun-Chang;Yom, Snag-Seop;Park, Heung-Woo;Park, Yun-Kwon;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jong-Hoon;Moonkyo Chung;Suh, Sang-Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In order to fabricate uncooled IR sensors for pyroelectric applications, multilayered thin films of Pt/PbTiO$_3$/Pt/Ti/Si$_3$N$_4$/SiO$_2$/Si and thermally isolating membrane structures of square-shaped/cantilevers-shaped microstructures were prepared. Cavity was also fabricated via direct silicon wafer bonding and etching technique. Metallic Pt layer was deposited by ion beam sputtering while PbTiO$_3$ thin films were prepared by sol-gel technique. Micromachining technology was used to fabricate microstructured-membrane detectors. In order to avoid a difficulty of etching active layers, silicon-nitride membrane structure was fabricated through the direct bonding and etching of the silicon wafer. Although multilayered thin film deposition and device fabrications were processed independently, these could b integrated to make IR micro-sensor devices.

  • PDF