• 제목/요약/키워드: Direct dynamics

검색결과 460건 처리시간 0.027초

벼 무논직파재배기술 사용확산의 시스템 다이내믹스 동태분석 -시범단지 사례를 중심으로- (A System Dynamics Analysis on Use Diffusion of Rice Wet Direct Seeding Technology - Focused on a Case of Pilot Village -)

  • 김성섭;정우석;하지희;서상택
    • 농촌지도와개발
    • /
    • 제24권2호
    • /
    • pp.99-115
    • /
    • 2017
  • The purpose of this study is to analyze potential adoption rates and reusing patterns of the new rice direct seeding technology. The model constructed and employed in this study is a system dynamics model of farmer adoption and reusing patterns for this new technology over time. The model incorporates a causal loop diagram that explains interactions among rice cultivation subsystems with feedback loops and further attempts to build a causal loop model with stock-flow diagram for computer simulation. As one example of how the model can be used to provide insight to rice farmers, simulations are run over varying levels on the cultivation process of rice. The major finding is to demonstrate the utility of system dynamics simulation methodology in aiding the rice wet direct seeding farmers' decision making.

Aerosol을 이용한 Direct-Write 시스템에서 침착된 입자의 형상예측 모델에 관한 연구 (DEVELOPMENT OF PREDICTION MODEL OF THE SHAPE OF DEPOSITED PARTICLES APPLIED FOR AEROSOL BASED DIRECT-WRITE TECHNOLOGY)

  • 박준정;백성구;리광훈
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.1-6
    • /
    • 2008
  • Direct Write Technologies are being utilized in various industrial fields such as antennas, engineered structures, sensors and tissue engineering. With Direct Write Technologies, producing features have the mesoscale range, from 1 to 100 microns. One form of the Direct Write Technologies is based on aerosol dynamics. The shape of deposited aerosols determine the form of products in the Direct Write Technology based on aerosol dynamics. To predict shape of deposited aerosol, a prediction model is created. In this study, we estimated Line-Width and Line-Thickness from the prediction model. Results of prediction model is valid from comparison with experimental results.

직접 적응기법을 이용한 모델추종 재형상 비행제어시스템 설계 (Model Following Reconfigurable Flight Control System Design Using Direct Adaptive Scheme)

  • 김기석;이금진;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.99-106
    • /
    • 2003
  • A new reconfigurable model following flight control method based on direct adaptive scheme is presented. Using the timescale separation principle, both the inner-loop and the outer-loop states are controlled simultaneously. For the timescale separation assumption to be satisfied, the inner-loop model dynamics is set to be fast whereas the outer-loop model dynamics is set to be relatively slow. The stability and convergence of the proposed control law is proved by Lyapunov theorem. One of the merits of the proposed reconfigurable controller is that the FDI process and the persistent input excitation are not necessary, which is suitable for the flight control system. To evaluate the reconfiguration performance of the proposed control method, numerical simulation is performed using six degree-of-freedom nonlinear dynamics.

An Adaptive and Robust Controller for the Undersea Robot Manipulator

  • Young-Sik kim;Park, Hyeung-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권2호
    • /
    • pp.13-22
    • /
    • 2003
  • To coordinate the robot manipulator along the desired trajectory, the exact model of the dynamics is required. The added mass and added moment of inertia, buoyancy, drag force, and friction mainly affect the dynamics of the undersea robot manipulator, and they are quite complex and unknown. In this reason. the exact model of the undersea robot manipulator is difficult to obtain. In this paper, instead of having efforts to get the exact model of the robot dynamics, a control-based approach was performed. We modeled the dynamics of the undersea robot manipulator whose parameters are unknown, and then applied a proposed direct adaptive and robust control, which is different from previous studies. The unknown added mass, and added moment of inertia, drag force and friction are estimated by the direct adaptive control scheme, and the drag force which is dominant disturbance is compensated by the robust control. Also, stability of the proposed control scheme is analyzed.

폴딩 도어 메커니즘 설계를 위한 기구학 및 동역학 해석 프로그램 개발 (Development of the Kinematic and Dynamic Analysis Program for the Design of the Folding Door Mechanism)

  • 서명원;권성진;심문보;조기용;이은표;박승영
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.187-193
    • /
    • 2002
  • Since the bus is regarded as the one of the most public transportation systems, research on the safety and facilities of the bus has been increased actively in recent years. In this paper, we concern the design of the bus door mechanism that is composed of many linkages and actuators(or motors). In particular, the folding door mechanism is representative system installed in most of urban buses. To design the folding door mechanism, we construct the kinematic and dynamic analysis model fur computer simulation. Also, the dynamic analysis is accomplished by both direct dynamics and inverse dynamics. Since the folding door mechanism has many design variables, the analysis program is developed to perceive kinematic and dynamic characteristics according to the design variables and simulation conditions.

Ab Initio Molecular Dynamics with Born-Oppenheimer and Extended Lagrangian Methods Using Atom Centered Basis Functions

  • Schlegel, H. Bernhard
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.837-842
    • /
    • 2003
  • In ab initio molecular dynamics, whenever information about the potential energy surface is needed for integrating the equations of motion, it is computed “on the fly” using electronic structure calculations. For Born-Oppenheimer methods, the electronic structure calculations are converged, whereas in the extended Lagrangian approach the electronic structure is propagated along with the nuclei. Some recent advances for both approaches are discussed.

고속정밀 서보제어를 위한 직구동 다관절 메니플레이터의 시간제어기 설계 (Time Delay Controller Design for the High Speed Precision Servo-Control of the Direct Drive Multi-axis Manipulator)

  • 이태경;김학성;정상철;최용제;안태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1004-1011
    • /
    • 1996
  • This paper covers the technology developmental stage work for the automatic ammunition loading system mainly focusing on the controller design of the electro-hydranlic type direct drive multi-axis manipulator. Mathematical model of the plant derived and PIDM servo-controller structured. Comparative study between the analytical and experimental work has been carried out to help understand the response property of the direct dine multi-axis robot. In the direct drive robot, non-negligible amount of disturbance and load Induced dynamics variation are transmitted to the drive axis and nonlinearity is highly observed. Thereupon a robust controller Implementing time-delay control law is proposed, and computer simulation confirms the possibility for the time-delay control application against the unpredictable disturbance and load-Induced dynamics variation.

  • PDF

New Cooling System Design of BLDC Motor for Electric Vehicle Using Computation Fluid Dynamics Modeling

  • Vu, Duc Thuan;Hwang, Pyung
    • Tribology and Lubricants
    • /
    • 제29권5호
    • /
    • pp.318-323
    • /
    • 2013
  • Overheating in electrical motors results in detrimental effects such as degradation of the insulation materials, demagnetization of magnets, increases in Joule losses, and decreases in motor efficiency and lifetime. Thus, it is important to find ways to dissipate heat from the motor and to keep the motor operating at its most efficient temperature. In this study, a new design to guide air flow through a given brushless direct current (BLDC) motor is developed and the design is analyzed, specifically by using computational fluid dynamics (CFD) simulations. The results showed that the temperature distribution in the three proposed models is lower than that in the original model, although the speed of the cooling fan in the original model reaches a very high value of $15{\times}10^3$ rpm. The results also showed that CFD can be effectively used to simulate the heat transfer of BLDC motors.

비선형 시스템제어를 위한 복합적응 신경회로망 (Composite adaptive neural network controller for nonlinear systems)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

Extended implicit integration process by utilizing nonlinear dynamics in finite element

  • Mohammadzadeh, Saeed;Ghassemieh, Mehdi;Park, Yeonho
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.495-504
    • /
    • 2017
  • This paper proposes a new direct numerical integration algorithm for solving equation of motion in structural dynamics problems with nonlinear stiffness. The new implicit method's degree of accuracy is higher than that of existing methods due to the higher order of the acceleration. Two parameters are defined, leading to a new family of unconditionally stable methods, which helps to take greater time steps in integration and eliminate concerns about the duration of solving. The method developed can be utilized for a number of solid plane finite elements, examples of which are given to compare the proposed method with existing ones. The results indicate the superiority of the proposed method.