• Title/Summary/Keyword: Direct demand model

Search Result 135, Processing Time 0.034 seconds

A Study on Tertiarization in Korea: Test of Baumol's Hypothesis (한국의 서비스화에 대한 연구: Baumol 가설을 중심으로)

  • Seo, Hwan-Joo;Lee, Young-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.143-150
    • /
    • 2007
  • Using a panel data of Korea for $1979{\sim}2002$, this study investigates the determinants of the service sector employment share in Korea. In order to analyze the impact of macroeconomic factors on the service sector's employment share we estimate a simple panel model which is in line with Baumol's model. The panel GMM estimation results show that: 1) The increase in the share of service-related jobs in total employment tends to rise with GDP per capita, which confirms demand-bias hypothesis proposed by Clark. 2) We find that a crucial role in this process has been played by the productivity gap. As Baumol's hypothesis or Baumolis disease, the expansion of the employment share in services relative to industry is the direct consequence of services' lower productivity performances.

  • PDF

A Study on Education Service Quality's Expected Loss Evaluation Model with Potential Customer Satisfaction Improvement Index (잠재적고객요구개선지수를 이용한 교육서비스품질 기대손실평가 모형에 관한 연구)

  • Chang, Yong-Hyuk;Cho, Yu-Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.2
    • /
    • pp.15-23
    • /
    • 2019
  • Among service industries of knowledge based economic era, the roles of educational service field are becoming more important and standard of educational service makes a direct effect on economic development and social growth. Therefore, accurate measurement of service quality is the most important assignment and the measurement of the service quality remains difficult assignment. So, this researcher classified quality attributes applying weighted value and found potential satisfaction level(PSL) and potential customer demand improvement index(PCDI) for trainees participating in national manpower business so as to suggest measurement of service quality and easiness of use and then, calculated satisfaction position and opportunity cost by quality factor with Taguchi's loss fraction. And, improvable satisfaction level was measured, opportunity cost by degree of customer dissatisfaction was quantitatively measured, and a model that can indicate with economic factors was suggested. In addition, methodology of measuring quality cost that can be reduced by quality improvement and direction of strategic decision-making for deciding items to be improved preferentially were suggested with qualitative index that can indicate the degree of customers' dissatisfaction by loss.

An Exact Algorithm for Two-Level Disassembly Scheduling (수준 분해 일정계획 문제에 대한 최적 알고리듬)

  • Kim, Hwa-Joong;Lee, Dong-Ho;Xirouchakis, Paul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.414-424
    • /
    • 2008
  • Disassembly scheduling is the problem of determining the quantity and timing of disassembling used or end-of-life products while satisfying the demand of their parts or components over a given planning horizon. This paper considers the two-level disassembly structure that describes a direct relationship between the used product and its parts or components. To formulate the problem mathematically, we first suggest an integer programming model, and then reformulate it to a dynamic programming model after characterizing properties of optimal solutions. Based on the dynamic programming model, we develop a polynomial exact algorithm and illustrate it with an example problem.

A Matlab/Simulink-Based PV array-Supercapacitor Model Employing SimPowerSystem and Stateflow Tool Box

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.18-29
    • /
    • 2014
  • This paper proposes the integration of photovoltaic (PV) and energy storage systems for sustained power generation. In this proposed system, whenever the PV system cannot completely meet load demands, the super capacitor provides power to meet the remaining load. A power management strategy is designed for the proposed system to manage power flows between PV array systems and supercapacitors (SC). The main task of this study was to design PV systems with storage strategies including MPPT with direct control and an advanced DC-link controller and to analyze dynamic model proposed for a PV-SC hybrid power generation system. In this paper, the simulation models for the hybrid energy system are developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow tool. This is the key innovative contribution of the research paper. The system performances are verified by carrying out simulation studies using practical load demand profile and real weather data.

Implementation of a Dry Process Fuel Cycle Model into the DYMOND Code

  • Park Joo Hwan;Jeong Chang Joon;Choi Hangbok
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.175-183
    • /
    • 2004
  • For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada deuterium uranium (CANDU) reactor, direct use of spent pressurized water reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-though and DUPIC fuel cycles.

Policy evaluation of the rice market isolation system and production adjustment system

  • Dae Young Kwak;Sukho Han
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.629-643
    • /
    • 2023
  • The purpose of this study was to examine the effectiveness and efficiency of a policy by comparing and analyzing the impact of the rice market isolation system and production adjustment system (strategic crops direct payment system that induces the cultivation of other crops instead of rice) on rice supply, rice price, and government's financial expenditure. To achieve this purpose, a rice supply and demand forecasting and policy simulation model was developed in this study using a partial equilibrium model limited to a single item (rice), a dynamic equation model system, and a structural equation system that reflects the casual relationship between variables with economic theory. The rice policy analysis model used a recursive model and not a simultaneous equation model. The policy is distinct from that of previous studies, in which changes in government's policy affected the price of rice during harvest and the lean season before the next harvest, and price changes affected the supply and demand of rice according to the modeling, that is, a more specific policy effect analysis. The analysis showed that the market isolation system increased government's financial expenditure compared to the production adjustment system, suggesting low policy financial efficiency, low policy effectiveness on target, and increased harvest price. In particular, the market isolation system temporarily increased the price during harvest season but decreased the price during the lean season due to an increase in ending stock caused by increased production and government stock. Therefore, a decrease in price during the lean season may decrease annual farm-gate prices, and the reverse seasonal amplitude is expected to intensify.

Analyzing the Difference between the Stated Preference and the Revealed Preference before/after the High-speed Rail Service in Korea

  • Lee, Jang-Ho
    • International Journal of Railway
    • /
    • v.7 no.1
    • /
    • pp.24-33
    • /
    • 2014
  • The Korean high-speed rail (HSR) began its commercial service in 2004. This service has been created significant changes in the system of intercity passenger travels of Korea. However, the actual ridership was approximately half of the estimated one in the planning stage. In this background, this paper presents the difference between the stated preference (SP) before the HSR service and the revealed preference (RP) after it using the intercity travel mode choice models. Several meaningful differences are found in terms of the factors affecting the travel mode choice, the estimation results of model, the monetary values of time, and elasticities. While the access/egress travel time of high-speed rail is less important than in-vehicle travel time in the SP sample, they have same weight in the RP sample. Also the RP models show that the probability of choosing HSR can be decreased by the increase of the number of vehicles in household contrary to the results from the SP models. The monetary values of travel time are relatively high and the direct and cross elasticities in response to changes in level-of-service of HSR are relatively low in the RP sample. This Korean case is expected to offer referable material for preparing high-speed rail services in other countries by showing the difference between the SP and RP before/after the actual service, identifying the importance of access/egress travel time and lower direct elasticities of HSR demand.

The Development of Econometric Model for Air Transportation Demand Based on Stationarity in Time-series (시계열 자료의 안정성을 고려한 항공수요 계량경제모형 개발)

  • PARK, Jeasung;KIM, Byung Jong;KIM, Wonkyu;JANG, Eunhyuk
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.95-106
    • /
    • 2016
  • Air transportation demand is consistently increasing in Korea due to economic growth and low cost carriers. For this reason, airport expansion plans are being discussed in Korea. Therefore, it is essential to forecast reliable air transportation demand with adequate methods. However, most of the air transportation demand models in Korea has been developed by simple regression analysis with several dummy variables. Simple regression analysis without considering stationarity of time-series data can bring spurious outputs when a direct causal relationship between explanatory variables and dependent variable does not exist. In this paper, econometric model were developed for air transportation demand based on stationarity in time-series data. Unit root test and co-integration test are used for testing hypothesis of stationarity.

The Simulation and Forecast Model for Human Resources of Semiconductor Wafer Fab Operation

  • Tzeng, Gwo-Hshiung;Chang, Chun-Yen;Lo, Mei-Chen
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • The efficiency of fabrication (fab) operation is one of the key factors in order for a semiconductor manufacturing company to stay competitive. Optimization of manpower and forecasting manpower needs in a modern fab is an essential part of the future strategic planing and a very important to the operational efficiency. As the semiconductor manufacturing technology has entered the 8-inch wafer era, the complexity of fab operation increases with the increase of wafer size. The wafer handling method has evolved from manual mode in 6-inch wafer fab to semi-automated or fully automated factory in 8-inch and 12-inch wafer fab. The distribution of manpower requirement in each specialty varied as the trend of fab operation goes for downsizing manpower with automation and outsourcing maintenance work. This paper is to study the specialty distribution of manpower from the requirement in a typical 6-inch, 8-inch to 12-inch wafer fab. The human resource planning in today’s fab operation shall consider many factors, which include the stability of technical talents. This empirical study mainly focuses on the human resource planning, the manpower distribution of specialty structure and the forecast model of internal demand/supply in current semiconductor manufacturing company. Considering the market fluctuation with the demand of varied products and the advance in process technology, the study is to design a headcount forecast model based on current manpower planning for direct labour (DL) and indirect labour (IDL) in Taiwan’s fab. The model can be used to forecast the future manpower requirement on each specialty for the strategic planning of human resource to serve the development of the industry.

Axial strengthening of RC columns by direct fastening of steel plates

  • Shan, Z.W.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.705-720
    • /
    • 2021
  • Reinforced concrete (RC) columns are the primary type of vertical support used in building structures that sustain vertical loads. However, their strength may be insufficient due to fire, earthquake or volatile environments. The load demand may be increased due to new functional usages of the structure. The deformability of concrete columns can be greatly reduced under high axial load conditions. In response, a novel steel encasement that distinguishes from the traditional steel jacketing that is assembled by welding or bolt is developed. This novel strengthening method features easy installation and quick strengthening because direct fastening is used to connect the four steel plates surrounding the column. This new connection method is usually used to quickly and stably connect two steel components by driving high strength fastener into the steel components. The connections together with the steel plates behave like transverse reinforcement, which can provide passive confinement to the concrete. The confined column along with the steel plates resist the axial load. By this way, the axial load capacity and deformability of the column can be enhanced. Eight columns are tested to examine the reliability and effectiveness of the proposed method. The effects of the vertical spacing between adjacent connections, thickness of the steel plate and number of fasteners in each connection are studied to identify the critical parameters which affect the load bearing performance and deformation behavior. Lastly, a theoretical model is proposed for predicting the axial load capacity of the strengthened RC columns.