• 제목/요약/키워드: Direct adaptive fuzzy controller

검색결과 35건 처리시간 0.018초

Comparative study of control strategies for the induction generators in wind energy conversion system

  • Giribabu, D.;Das, Maloy;Kumar, Amit
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.635-662
    • /
    • 2016
  • This paper deals with the comparison of different control strategies for the Induction generators in wind energy conversion system. Mainly, two types of induction machines, Self excited induction generator (SEIG) and doubly Fed Induction generators (DFIG) are studied. The different control strategies for SEIG and DFIG are compared. For SEIG, Electronic load Controller mechanism, Static Compensator based voltage regulator are studied. For DFIG the main control strategy namely vector control, direct torque control and direct power control are implemented. Apart from these control strategies for both SEIG and DFIG to improve the performance, the ANFIS based controller is introduced in both STATCOM and DTC methods. These control methods are simulated using MATLAB/SIMULINK and performances are analyzed and compared.

러프 셋 이론을 사용한 HVDC 시스템을 위한 적응 Granule 제어 (Adaptive Granule Control with the Aid of Rough Set Theory for a HVDC system)

  • 왕중선;양정제;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.144-147
    • /
    • 2006
  • A proportional intergral (PI) control strategy is commonly used for constant current and extinction angle control in a HVDC (High Voltage Direct Current) system. A PI control strategy is based on a stactic design where the gains of a PI controller are fixed. Since the response of a HVDC plant dynamically changes with variations in the operation point a PI controller performance is far from optimum. The contribution of this paper is the presentation of the design of a rough set based, fuzzy adaptive control scheme. Experimental results that compare the performance of the adaptive control and PI control schemes are also given.

  • PDF

Optimal Power Flow of DC-Grid Based on Improved PSO Algorithm

  • Liu, Xianzheng;Wang, Xingcheng;Wen, Jialiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1586-1592
    • /
    • 2017
  • Voltage sourced converter (VSC) based direct-current (DC) grid has the ability to control power flow flexibly and securely, thus it has become one of the most valid approaches in aspect of large-scale renewable power generation, oceanic island power supply and new urban grid construction. To solve the optimal power flow (OPF) problem in DC grid, an adaptive particle swarm optimization (PSO) algorithm based on fuzzy control theory is proposed in this paper, and the optimal operation considering both power loss and voltage quality is realized. Firstly, the fuzzy membership curve is used to transform two objectives into one, the fitness value of latest step is introduced as input of fuzzy controller to adjust the controlling parameters of PSO dynamically. The proposed strategy was applied in solving the power flow issue in six terminals DC grid model, and corresponding results are presented to verify the effectiveness and feasibility of proposed algorithm.

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

파라미터 변동을 고려한 유도전동기의 퍼지제어 (Fuzzy Control of Induction Motor Drive with Considering Parameter Variation)

  • 이영실;이정철;이홍균;정택기;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1128-1131
    • /
    • 2003
  • This paper proposes a speed control system based on a fuzzy logic approach, integrated with a simple and effective adaptive algorithms. And this paper attempts to provide a thorough comparative insight into the behavior of induction motor drive with PI, direct and improved fuzzy speed controller. A indirect vector controlled induction motor is simulated under varying operating condition. The validity of the comparative results is confirmed by simulation results for induction motor drive system.

  • PDF