• 제목/요약/키워드: Direct Torque and Flux Control

검색결과 158건 처리시간 0.021초

유도전동기 회전자 저항 보상을 위한 벡터제어 (Vector Control for the Rotor Resistance Compensation of Induction Motor)

  • 박현철;이수원;김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

영구자석 동기전동기의 새로운 순시토오크 추정 및 제어 (New Instantaneous Torque Estimation and Control for PM Synchronous Motor)

  • 정세교;김현수;윤명중
    • 전력전자학회논문지
    • /
    • 제3권1호
    • /
    • pp.23-35
    • /
    • 1998
  • 영구자석 동기전동기의 제어에 있어서 토오크 맥동은 전동기 제어성능 결정에 큰 요인으로 작용한다. 본 논문에서는 이러한 토오크 맥동을 효과적으로 저감하기 위한 새로운 토오크 추정 및 제어기법에 대해서 다룬다. 제안된 기법에서는 모델 기준 적응시스템(Model reference adaptive system ; MRAS) 기법을 이용하여 순시 토오크를 추정하고 적본형 가변구 조제어(Integral variable structure control ; IVSC)를 이용하여 추정된 토오크를 제어한다. DSP를이용하여 고 토오크 영구자석 동기전동기 제어시스템을 구성하고 실험을 수행하였으며 그 결과 제안된 제어기법이 우수한 토오크 맥동 저감효과를 가짐을 입증하였다.

Torque Ripple Minimization for Induction Motor Driven by a Photovoltaic Inverter

  • Atia, Yousry
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.679-690
    • /
    • 2009
  • The paper presents a new photovoltaic inverter for stand-alone induction motor application. The proposed system is composed of two stages. First stage is for the photovoltaic dc power feeding and second stage is dedicated to the motor-inverter subsystem and control technique. A direct torque control (DTC) with a novel switching strategy for motor torque ripple minimization is introduced. The novel DTC strategy is based on selecting a suitable voltage vector group for motor torque ripple minimization. A three-level voltage source inverter (VSI) is used instead of a two level inverter because the first has more available vectors and lower ripples in the output current and flux than the second, thus it has lower torque ripples. The photovoltaic array and battery bank are sized and the configuration is indicated based on sun-hour methodology. Simulation results show a comparison between three systems; two level VSI with conventional DTC strategy, three level VSI with conventional DTC, and the proposed system that has a novel DTC switching strategy applied to three level VSI. The results show that the proposed system has lower ripples in the current, flux and torque of the motor.

A Hybrid DTC-DSC Drive for High Performance Induction Motor Control

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohamed;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.704-712
    • /
    • 2011
  • This paper describes a hybrid induction motor drive system incorporating DTC-hysteresis and Direct Self Control (DSC) schemes to achieve excellent dynamic performance. The control scheme is switched from a circular to a hexagonal flux locus whenever a dynamic condition is encountered. On the other hand, when the motor operates under steady state conditions, a circular flux locus is used. Without major modifications to the simple structure of a basic DTC, hexagonal flux locus operation is established by modifying the flux error status, before it is fed to the look-up table. The feasibility of the proposed hybrid scheme to achieve excellent control performance is verified by experimental results.

직접 토크 제어를 사용한 영구자석 동기전동기의 센서리스 속도제어 (Speed Sensorless Control of PMSM Using Direct Torque Control)

  • 신성락;김상균;이동희;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.978-980
    • /
    • 2000
  • Sensorless PMSM is much studied for the industrial applications and home appliances because, a mechanical sensor reduces reliability and increases cost. Two types of instantaneous torque controls are basically used for high performance variable-speed a.c. drive : vector control and direct torque control. This paper investigates speed sensorless control of PMSM using direct torque control. The switching of inverter is determined from SVPWM realizing the command voltage which is obtained by flux error and measured current without d-q transformation. The rotor speed is estimated through adaptive observer with feedback loop. The simulation and experimental results indicate good performances.

  • PDF

직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템 (A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction)

  • 김남훈;김민호;김민회;김동희;황돈하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

고속 엘리베이터에서 3상 유도전동기의 강건한 구동을 위한 DTIF 제어기의 구현 (Implemention of a DTIF Controller for Robust Drive of a 3 Phase Induction Motor in High-Speed Elevator)

  • 김동진;강창수;한완옥
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권3호
    • /
    • pp.88-96
    • /
    • 1995
  • 고속 엘리베이터는 높은 안정성과 제어성이 필요하므로 기동, 정지시에 영 속도를 포함한 정밀 구동이 필요하다. 유도전동기의 정밀 구동을 위하여 사용되어온 벡터 제어 기법은 슬립 주파수 제어에 의한 간접 벡터 제어와 계자편향에 의한 직접벡터 제어의 두가지 종류로 분류할 수 있으며, 직접벡터제어의 경우 전동기 제어 변수의 변화에 강건한 반면에 직접 벡터 제어의 경우 비교적 넓은 속도구간에서 제어가 가능하다는 장점을 가지고 있다. 본 논문에서 토크는 직접 벡터기반으로 제어하고, 지속은 간접 벡터 기반으로 제어함으로써 유도전동기의 과도상태 동작과 시동시 영 속도 부근 및 저속 영역에서의 동작이 보다 강건하도록 개선된 직접토크-간접자속(DTIF, Direct Torque Indirect Flux)제어기를 제시하였다. 3상 유도전동기의 구동을 위하여 제안된 시스템의 수행결과는 시뮬레이션과 실험을 통하여 입증하였으며, 영 속도부근과 저속에서 고속으로의 변환과정은 속도응답에 대한 상전압, 상전류 그리고 DC링크 전류를 비교 측정하여 안정하고 강건한 속도변화가 이루어짐을 확인 할 수 있었다.

  • PDF

A Scheme of EDTC Control using an Induction Motor Three-Level Voltage Source Inverter for Electric Vehicles

  • Zaimeddine, R.;Berkouk, E.M.;Refoufi, L.
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.505-512
    • /
    • 2007
  • The object of this paper is to study a new control structure for sensorless induction machines dedicated to electrical drives using a three-level voltage source inverter VSI-NPC. The amplitude and the rotating speed of the flux vector can be controlled freely. The scheme investigated is an Enhanced direct torque control "EDTC" for electric vehicle propulsion. The considered application imposes some constraints which are achieved in EDTC control (fast torque response, optimal switching logic, torque control at zero speed, and large speed control. The results obtained for an induction motor indicate superior performance over the FOC type without need for any mechanical sensor.

BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감 (Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution)

  • 김사무엘;정승호;류세현;권병일
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

토오크 기울기에 의한 일정스위칭을 위한 유도전동기의 직접토오크 제어 (Direct Torque Control of Induction Motor for Constant Switching by Torque Slop)

  • 박정국;김대곤;정병호;최연옥;조금배;백형래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.296-299
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional DTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(DTC) schemes are proposed. Those schemes are based on the torque slope and enable to reduce the torque ripple and maintain the switching frequency constantly.

  • PDF