• 제목/요약/키워드: Direct Sketching

검색결과 5건 처리시간 0.02초

가상 완드 스타일의 직관적인 변형을 지원하는 공간 스케치 시스템 (The Intuitive Change of Virtual Wand Style in Spatial Sketch System)

  • 남상훈;채영호
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.56-61
    • /
    • 2009
  • 공간 스케치에서 그리고자 하는 모델의 종류에 따라 효율적인 입력장치가 다르게 정의될 수 있다. 범용적인 공간 스케치 시스템에서 다양한 형태의 완드 형태를 지원하여 그리고자 하는 모델 또는 모델의 특정 부분에 적합한 완드의 형태를 바꾸어 가며 사용함으로써 효율적인 공간 스케치를 수행할 수 있다. 모델을 스케치 하는 중에 완드의 형태를 변형하기 위하여 기존의 메뉴를 사용하지 않고, 완드의 자세 또는 경로를 조절함으로써 완드의 타입과 형태를 바꾸는 완드 스타일을 제안하였으며, 완드의 입력 데이터를 격자 기반의 드로잉 기법을 사용하여 공간 스케치 시스템에 적용하였다.

  • PDF

정의된 육면 격자의 공간 타일링에 의한 3차원 모델링 (A Novel 3D Modeling Technique by Spatial Tiling of the Pre-defined Cubical Grids)

  • 남상훈;채영호
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.103-108
    • /
    • 2008
  • 3 차원 공간 모델링을 하기 위한 스케치 시스템의 경우, 3 차원 공간상의 입력 장치를 이용하는 것이 디자이너의 의도를 가장 정확하게 표현할 수 있다. 하지만, 3 차원 공간상의 스케치는 공간 입력 장치의 디자이너 사용에 따라 오차가 방생할 수 있다. 이러한 오차를 줄이기 위하여 디자이너가 일반적으로 사용해 온 드로잉 방식인 다중의 스트로크를 데이터로 사용하여 의도한 모델링을 수행하게 된다. 다중의 스트로크를 실시간으로 처리하기 위해 공간상에 정의된 격자를 이용한 모델링 방식을 사용하였다. 곡면을 구성하기 위한 격자간의 관계 및 다중의 스트로크를 처리하기 위한 주변 격자간의 관계를 정리하고, 이를 이용한 스케치 시스템을 구현하였다.

  • PDF

가상 공간 디자인을 위한 3차원 목표곡선을 이용한 곡면 변형 (Surface Deformation by using 3D Target Curve for Virtual Spatial Design)

  • 권정훈;이정인;채영호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.868-876
    • /
    • 2006
  • 2차원 평면 입력을 통한 모델링에서는 입력 값을 3차원 데이타로 바꾸기 위한 기능과 메뉴들이 필요하지만 가상공간 디자인을 위한 3차원 입력 시스템은 입력 값을 곧바로 3차원 데이타로 변환될 수 있다. 하지만 3차원 입력시스템에서 효율적인 곡면 모델링 방법, 특히 곡면 변형 방법은 제안되지 않고 있다. 본 논문에서는 기존의 변형방법이 3차원 입력시스템에서 적용되었을 때 발생할 수 있는 문제점을 제시한다. 그리고 디자이너가 접근하기 쉬운 목표곡선을 이용한 변형을 제안한다. 이와 같은 3차원 목표곡선을 이용한 변형을 통해 디자이너가 보다 쉽게 3차원 입력시스템에 접근하여 가상공간 스케칭 및 디자인을 구현할 수 있다.

한국의 낙농시설 개선에 관한 연구 (A Study on the Improvement of Dairy Rousing Systems in Kore)

  • 김문기;고재군;김현욱
    • 한국농공학회지
    • /
    • 제24권1호
    • /
    • pp.31-43
    • /
    • 1982
  • Engineering phase of dairy housing systems has close connection with the milk produc- tivity of dairy cattle, the quality of milk, extension of dairy production systems, labor- saving in management of dairy cattle and the like. Moreover, the rate of investment of dairy housing facilities is of relatively high level, However, there has been almost no research effort for the improvement of engineering aspects of dairy housing systems in Korea. The purpose of this study is to find out general engineering problems and to recomm- end the improvement in dairy housing systems in Korea. Field survey by means of questionaire, direct measurements, taking pictures and sketching was conducted to get necessary information for the study. Kyung-ki Do region was firstly chosen for sampling area since it has included more than half of the number of dairy farms of the whole country. The results obtained are summarized as follows: 1. In overall dairy farm layout, the dwellings of workers were ignored in the light of sanitary environment 2. The layout of stalls in a dairy barn belongs mostly to the type of double-row face-out, which is compatible with the emphasis of manure disposal activities. 3. While the width and length of stalls were sufficiently close to the standard dimension, the width of mangers was much less than the standard dimension. 4. The width and depth of manure gutters and the width of working alleys were much. less than the standard dimension. 5. The mooring equipment was mostly in the classes of chain or rope. The watering equipment was not facilitated independantly except the one cese of using watercup. 6. The bucket milkers with one or two bucket milkers with the capacity of two cattles. each were used as milking equipment in most dairy farms. 7. There were only few milk rooms independently spaced from other space, in which the arrangement of milking equipment was much less than the standard condition. 8. The lounging ground area was averaged to be sufficient for the activity of dairy herd. 9. Silos for silage used during winter consisted of mostly bunker silos, trench silos and underground vertical silos. Ordinary vertical silos were considered for the farmers to be inconvenient for the labor saving. 10. From the view point of heat conservation and moisture removal within the dairy barns, windows were not flexible for the easy ventilation and ceiling part was not adequate for temperatur maintenance. 11. Waste treatment and disposal systems were not provided with most dairy farms, therefore the livestock waste pollution problems would be serious in the near future.

  • PDF

유역특성에 의한 합성단위도의 유도에 관한 연구 (Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics)

  • 서승덕
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF