• Title/Summary/Keyword: Direct Simulation Monte Carlo

Search Result 171, Processing Time 0.024 seconds

Source & crustal propagation effects on T-wave envelopes

  • Yun, Suk-Young;Park, Min-Kyu;Lee, Won-Sang
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

Numerical Simulation of an Electric Thruster Plume Behavior Using the PIC-DSMC Method (PIC-DSMC 방법을 이용한 전기추력기 플룸 해석)

  • Kang, Sang Hun;Jun, Eunji
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • To develop technologies for the stable operation of electric propulsion systems, the exhaust plume behavior of electric thrusters was studied using PIC-DSMC(particle-in-cell and direct simulation Monte Carlo). For the numerical analysis, the Simple Electron Fluid Model using Boltzmann relation was employed, and the charge and momentum exchanges due to atom-ion collisions were considered. The results of this study agreed with the plasma potentials measured experimentally. Near the thruster exit, active collisions among particles and charge exchanges created slow ions and fast atoms, which were expected to significantly affect the trajectory and velocity of the thruster exhaust plume.

Fabrication and estimation of the plastic detector for measuring the contamination for beta-ray level of the kind of duct waste (배관류 폐기물의 베타선 오염도 측정용 플라스틱 검출기 제작 및 특성평가)

  • Kim Gye-Hong;Oh Won-Zin;Lee Kune-Woo;Seo Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.159-165
    • /
    • 2005
  • The characterization of radiological contamination inside pipes generated during the decommission of a nuclear facility is necessary before pipes can be recycled or disposed. But, existing direct measurements of radioactive contamination level using the survey-meter can not estimate the characteristic of contamination on a local area such as the pipe inside. Moreover, the measurement of surface contamination level using the indirect methods has many problems of an application because of the difficulty of collecting sample and contamination possibility of a worker when collecting sample. In this work, plastic scintillator was simulated by using Monte Carlo simulation method for detection of beta radiation emitted from internal surfaces of small diameter pipe. Simulation results predicted the optimum thickness and geometry of plastic scintillator at which energy absorption for beta radiation was maximized. In addition, the problem of scintillator processing and transferring the detector into the pipe inside was considered when fabricating the plastic detector on the basis of simulation results. The characteristic of detector fabricated was also estimated. As a result, it was confirmed that detector capability was suitable for the measurement of contamination level. Also, the development of a detector for estimating the radiological characteristic of contamination on a local area such as the pipe inside was proven to be feasible.

  • PDF

A Study on the Simulation and the Measurement of 6 MeV electron Beam (6 MeV 전자선의 측정과 모의계산에 대한 연구)

  • Lee Sung Ah;Lee Jeong Ok;Moon Sun Rock;Won Jong Jin;Kang Jeong Ku;Kim Seung Kon
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 1995
  • Purpose : We compared the calcualted percent depth dose curves of 6 MeV electron beam to that of measured to evaluate the usefulness of Monte-carlo simulation method in radiation physics. Materials and Methods : The radiation dose values of 6 MeV electron beam using EGS4 code with one million histories in water were compared values that were measured from the depth dose curve of electron beam irradiated by medical accelerator ML6M. The central axis dose values were calculated according to the changing field size. such as $5{\times}5,\;10{\times}10,\;15{\times}15,\;20{\times}20cm^2$. Results : The value calculated showed a very similar shape to depth dose curve. The calculated and measured value of $D_max$ at $10{\times}10cm^2$ cone is 15mm and 14mm respectively. The calculated value of the surface radiation dose rate is $65.52\%$ and measured one is $76.94\%$. The surface radiation dose rate has varied from $64.43\%$ to $66.99\%$. The calculated values of $D_max$ are in the range between 15mm and 18mm. The calculated value was fitted well with measured value around the $D_max$ area, excluding build up range and below the $90\%$ depth dose area. Conclusion : This result suggested that the calculation of dose value can be replace the direct measurement of the dose for radiation therapy. Also, EGS4 may be a very convenient program to assess the effect of radiation dose using by personal computers.

  • PDF

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

Capacity of Opportunistic Incremental Relaying System Controlled by Truncated Power in Rayleigh Fading Channels (Rayleigh 페이딩 채널에서 Truncated 전력 제어된 기회전송 추가 릴레이 시스템의 전송용량)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2015
  • Recently an opportunistic incremental relaying (OIR) system has been studied for improving the performance degradation in fading channel. However there are few studies on power control in the system, and the studies are assumed perfect knowledge of the all channels at transmitters. The assumption that the source know all channel information is difficult in practical channels. Therefore, in this paper we assume that the source knows partial channel information and propose a modified truncated channel inversion (TCI) power control scheme for the OIR system. We derive the channel capacity of the proposed system and perform Monte Carlo simulation. It is noticed that the proposed OIR system has better capacity than that of the power controlled system with direct path only, and the capacity increases with the number of relays. The power controlled OIR system gained more capacity of 29.7%, 32.7%, and 33.5% than that of the system with direct path only for the number of relays of 1, 3, and 5, respectively. The results from this paper can be applied to the estimation of a theoretical capacity for the currently operating cellular systems when they adopt the IOR system.

A Study on Generating Meta-Model to Calculate Weapon Effectiveness Index for a Direct Fire Weapon System (직사화기 무기체계의 무기효과지수 계산을 위한 메타모델 생성방법 연구)

  • Rhie, Ye Lim;Lee, Sangjin;Oh, Hyun-Shik
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Defense M&S(Modeling & Simulation) requires weapon effectiveness index which indicates Ph(Probability of hit) and Pk(Probability of kill) values on various impact and environmental conditions. The index is usually produced by JMEM(Joint Munition Effectiveness Manual) development process, which calculates Pk based on the impact condition and circular error probable. This approach requires experts to manually adjust the index to consider the environmental factors such as terrain, atmosphere, and obstacles. To reduce expert's involvement, this paper proposes a meta-model based method to produce weapon effectiveness index. The method considers the effects of environmental factors during calculating a munition's trajectory by utilizing high-resolution weapon system models. Based on the result of Monte-Carlo simulation, logistic regression model and Gaussian Process Regression(GPR) model is respectively developed to predict Ph and Pk values of unobserved conditions. The suggested method will help M&S users to produce weapon effectiveness index more efficiently.

Incremental Cooperative Transmission of Bidirectional Relaying Schemes in Underlay Cognitive Radio (언더레이 인지기술에서 양방향 릴레이 증분 협력 전송에 관한 연구)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.47-53
    • /
    • 2013
  • In this paper, we propose an incremental cooperative transmission protocol in two-way underlay cognitive radio networks. In the proposed protocol, two secondary sources attempt to transmit their packet to each other with help of a secondary relay under interference constraint. For performance evaluation, we derive exact closed-form expressions of average outage probability over Rayleigh fading channel. Then, we perform Monte Carlo simulations to verify the derivations. Results present that the simulation and theoretical results are in good agreement and the outage performance of the proposed protocol is better than that of two-way direct transmission protocol.

Sensitivity Analysis of Expected Project Completion Time in a PERT Network with Discrete Distributions (이산형 활동시간 분포를 갖는 PERT 네트워크에서 평균사업완성시간과의 민감도 분석)

  • Cho, Jae-Gyeun;Park, Chul-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.108-117
    • /
    • 2007
  • For a PERT network the sensitivity analyses are valuable tools for effective management and control of a project. In a previous article, a method was developed for the sensitivity analysis of the expected project completion time (${\mu}_{T}$) with respect to the expected duration of an activity (${\mu}_{i}$) under the assumption that the durations of activities are independent and normally distributed. In the present article, a method is presented for the sensitivity analysis of ${\mu}_{T}$ with respect to ${\mu}_{i}$ when the durations of activities are independent and follow discrete distributions, which utilizes the previous sensitivity analysis method with modifications. The accuracy of the proposed method is assessed using various example PERT networks, and the computational results indicate that the accuracy is comparable to that of direct Monte Carlo simulation.

  • PDF

A numerical study on the molecular transition flow for the rotating blades (회전날개주위 분자천이유동에 관한 수치해석적 연구)

  • Heo, Jung-Sik;Hwang, Yeong-Gyu;Kim, Dong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.640-650
    • /
    • 1998
  • Pumping performances of a helical molecular drag dump(MDP) and of a radial MDPs are numerically analyzed by using the direct simulation Monte Carlo (DSMC) method. A helical- and radial-MDP have rotating pumping channels cut on a cylinder and on a disk, respectively. For a helical MDP, the present results agree quantitatively with the previously known numerical results. For radial MDPs, both of the Type 1 (having pumping channels cut on the stationary disk) and of the Type 2 (having pumping channels cut on the rotating disk) are analyzed to predict their performances for various parameters, i.e., the radius of curvature center of the channel wall, the depth of the channel, the clearance between housing and disk, and the rotating speed. The results show that the performance of the Type 2 is superior to that of the Type 1, and that for all types the pumping efficiency decreases as the clearance increases. Also, the radial type MDP has larger leakage losses in the direction of pumping channel than does the helical one.