• Title/Summary/Keyword: Direct PCR (dPCR)

Search Result 46, Processing Time 0.023 seconds

UNG-based direct polymerase chain reaction (udPCR) for the detection of porcine circovirus 2 (PCV2) (UNG 기반 direct polymerase chain reaction (udPCR)을 이용한 돼지 써코바이러스 2형 진단법)

  • Kim, Eun-Mi;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.4
    • /
    • pp.253-261
    • /
    • 2014
  • Porcine circovirus disease (PCVD) is a major problem of swine industry worldwide, and diagnosis of PCV2, causal agent of PCVD, has been doing in clinical laboratories of pig disease by polymerase chain reaction (PCR) methods. But the PCR analyses have a serious problem of misdiagnosis by contamination of DNA, in particular, from carryover contamination with previously amplified DNA or extracted DNA from field samples. In this study, an uracil DNA glycosylase (UNG)-based direct PCR (udPCR) without DNA extraction process and DNA carryover contamination was developed and evaluated on PCV2 culture and field pig samples. The sensitivity of the udPCR combined with dPCR and uPCR was same or better than that of the commercial PCR (cPCR) kit (Median diagnostics, Korea) on PCV2-positive serum, lymph node and lung samples of the pigs. In addition, the udPCR method confirmed to have a preventing ability of mis-amplification by contamination of pre-amplified PCV2 DNA from previous udPCR. In clinical application, 170 pig samples (86 tissues and 84 serum) were analysed by cPCR kit and resulted in 37% (63/170) of positive reaction, while the udPCR was able to detect the PCV2 DNA in 45.3% (77/170) with higher sensitivity than cPCR. In conclusion, the udPCR developed in the study is a time, labor and cost saving method for the detection of PCV2 and providing a preventing effect for DNA carryover contamination that can occurred in PCR process. Therefore, the udPCR assay could be an useful alternative method for the diagnosis of PCV2 in the swine disease diagnostic laboratories.

Direct Extraction of DNA from Soil for Amplification of 16S rRNA Gene Sequences by Polymerase Chain Reaction

  • Cho, Jae-Chang;Lee, Dong-Hun;Cheol, Cho-Young;Cho, Jang-Cheon;Kim, Sang-Jong
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.229-235
    • /
    • 1996
  • Microgram quantities of DNA per gram soil were recovered with SDS- based and freeze-and thaw procedures. The average DNA fragment size was > 23 Kb. This method generated minimal shearing of extracted DNA. However, the DNA extracts still contained considerable amounts of humic impurities sufficient to inhibit PCR. Several approaches were used to reduce the interferences with the PCR (use of CTAF in extraction step, Elutip-d column purification, addition of BSA to PCR buffer) to accomplish PCR with DNA extract as a template. Most of the DNA extracts were not digested completely by restriction endonuclease, and CTAB-TREATED ane Elutip-d column purified DNA extracts were partially digested. Regarding as restriction enzyme digestion, all PCRs failed to amplify 16S rRNA gene fragments in the DNA extracts. In the case of DNA extracts only where BSA was added to PCR buffer, PCR was successfully conducted whether the DNA extracts were treated with CTAB or purified with columns. However, these two treatments were indispensable for humic impurity-rich DNA extracts to generate the PCR-compatible DNA samples. Direct extraction of DNA, coupled with these procedures to remove and relieve interferences by humic impurities and followed by the PCR, can be rapid and simple method for molecular microbiological study on soil microorganisms.

  • PDF

A new cell-direct quantitative PCR based method to monitor viable genetically modified Escherichia coli

  • Yang Qin;Bo Qu;Bumkyu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.795-807
    • /
    • 2022
  • The development and commercialization of industrial genetically modified (GM) organisms is actively progressing worldwide, highlighting an increased need for improved safety management protocols. We sought to establish an environmental monitoring method, using real-time polymerase chain reaction (PCR) and propidium monoazide (PMA) treatment to develop a quantitative detection protocol for living GM microorganisms. We developed a duplex TaqMan quantitative PCR (qPCR) assay to simultaneously detect the selectable antibiotic gene, ampicillin (AmpR), and the single-copy Escherichia coli taxon-specific gene, D-1-deoxyxylulose 5-phosphate synthase (dxs), using a direct cell suspension culture. We identified viable engineered E. coli cells by performing qPCR on PMA-treated cells. The theoretical cell density (true copy numbers) calculated from mean quantification cycle (Cq) values of PMA-qPCR showed a bias of 7.71% from the colony-forming unit (CFU), which was within ±25% of the acceptance criteria of the European Network of GMO Laboratories (ENGL). PMA-qPCR to detect AmpR and dxs was highly sensitive and was able to detect target genes from a 10,000-fold (10-4) diluted cell suspension, with a limit of detection at 95% confidence (LOD95%) of 134 viable E. coli cells. Compared to DNA-based qPCR methods, the cell suspension direct PMA-qPCR analysis provides reliable results and is a quick and accurate method to monitor living GM E. coli cells that can potentially be released into the environment.

Detection of Human Adenoviruses and Enteroviruses in Korean Oysters Using Cell Culture, Integrated Cell Culture-PCR, and Direct PCR

  • Choo Yoe-Jin;Kim Sang-Jong
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.162-170
    • /
    • 2006
  • Oysters are known to be carriers of food-born diseases, but research on viruses in Korean oysters is scarce despite its importance for public health. We therefore tested oysters cultivated in Goheung, Seosan, Chungmu, and Tongyeong, for viral contamination using cell culture and integrated cell culture PCR (ICC-PCR) with Buffalo green monkey kidney (BGMK) and human lung epithelial (A549) cells. Additional screens via PCR, amplifying viral nucleic acids extracted from oysters supplemented our analysis. Our methods found 23.6 %, 50.9 %, and 89.1 % of all oysters to be positive for adenoviruses when cell culture, ICC-PCR, and direct PCR, respectively, was used to conduct the screen. The same methodology identified enteroviruses in 5.45%, 30.9%, and 10.9% of all cases. Most of the detected enteroviruses (81.3%) were similar to poliovirus type 1; the remainder resembled coxsackievirus type A1. A homology search with the adenoviral sequences revealed similarities to adenovirus subgenera C (type 2, 5, and 6), D (type 44), and F (enteric type 40 and 41). Adenovirus-positive samples were more abundant in A549 cells (47.3%) than in BGMK cells (18.2 %), while the reverse was true for enteroviruses (21.8 % vs. 14.5 %). Our data demonstrate that Korean oysters are heavily contaminated with enteric viruses, which is readily detectable via ICC-PCR using a combination of A549 and BGMK cells.

Direct PCR Detection of the Causal Agents, Soybean Bacterial Pustule, Xanthomonas axonopodis pv. glycines in Soybean Seeds (콩 종자에서 Xanthomonas axonopodis pv. glycines의 검출을 위한 Direct PCR 방법 개발)

  • Lee, Yong-Ju;Kang, Mi-Hyung;Noh, Tae-Hwan;Lee, Du-Ku;Lee, Geon-Hwi;Kim, Si-Ju
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.83-87
    • /
    • 2009
  • Direct Polymerase Chain Reaction (PCR) method that combines biological and enzymatic amplification of PCR targets was developed for the detection of Xanthomonas axonopodis pv. glycines on soybeen seeds without DNA isolation. Primers Xag F1 and Xag R1 were designed to specifically amplify a 401 bp fragment of the glycinecin A gene of X axonopodis pv. glycines. Xag F1 and Xag R1 were used to carry out the PCR analysis with genomic DNA from 45 different bacterial strains including phylogenetically related bacteria with X axonopodis pv. glycines, and other bacterial strains of different genus and species. The PCR assay using this set of primers were able to detect X axonopodis pv. glycines with DNA concentration as low as 200 fg and $1.8{\times}10^3$ cfu/ml. The Xag was detected from the seed samples incubated for 2 hrs with shaking and the intensity of the band was increase with the incubation time of seeds. The Direct PCR assay method without DNA isolation makes detection of X. axonopodis pv. glycines on soybean seeds easier and more sensitive than other conventional methods. The developed seed assay using direct PCR method will be useful for the specific detection of X. axonopodis pv. glycines in soybean seed samples.

The Detection and Density Fluctuation of Mulberry Dwarf Phytoplasma using Nested-PCR and Competitive-PCR Methods (Nested-PCR법과 Competitive PCR법을 이용한 뽕나무 오갈병(MD) Phytoplasma의 검출과 밀도변화)

  • Chae, Seungmin;Lee, Sol;Cha, Byeongjin;Lee, Hyokin;Han, Sangsub
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.623-629
    • /
    • 2011
  • The detectable levels and population fluctuations of phytoplasmas infecting dwarf mulberry trees were investigated using nested-PCR and competitive-PCR methods. Samples of five different types were studied : A. petiole of a leaf that displays dwarf symptoms, B. petiole from apparently healthy leaf residing on a branch also supports a leaf with dwarf symptoms, C. the branch portion that supports a leaf with dwarf symptoms, D. the leaf petiole from healthy appearing leaves on branch with no dwarf symptoms, and branch portion of branch with no dwarf symptoms, E. the rootlets of trees with dwarf symptoms. These 5-parts were collected from each tree during June - April, once in every two months. The phytoplasma was detected from all parts of collected mulberry samples during all seasons using nested-PCR with AS-1/AS-2 primer pairs. The phytoplasma was detected until $10^4$ dilution using direct-PCR method, but it was detected until $10^{13}$ dilution by the nested-PCR method. The density of pytoplasma was found to be $7.94{\times}10^{18}-10^{12}copies/{\mu}L$ in mulberry trees. The density of phytoplasma was observed throughout the year in all samples of mulberry trees. The highest rates of phytoplasma was found in the samples B and C during the early growing season followed by the sample A and D during the dormant season. Samples C and E displayed the highest phytoplasma density followed sample D. The density of phytoplasma appeared stable during all the seasons for samples C and A. The result of the present study demonstrates the utility of nested-PCR and competitive-PCR for detection and determination of population fluctuations of phytoplasmas in plant tissues.

Microarrays for the Detection of HBV and HDV

  • Sun, Zhaohui;Zheng, Wenling;Zhang, Bao;Shi, Rong;Ma, Wenli
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.546-551
    • /
    • 2004
  • The increasing pace of development in molecular biology during the last decade has had a direct effect on mass testing and diagnostic applications, including blood screening. We report the model Microarray that has been developed for Hepatitis B virus (HBV) and Hepatitis D virus (HDV) detection. The specific primer pairs of PCR were designed using the Primer Premier 5.00 program according to the conserved regions of HBV and HDV. PCR fragments were purified and cloned into pMD18-T vectors. The recombinant plasmids were extracted from positive clones and the target gene fragments were sequenced. The DNA microarray was prepared by robotically spotting PCR products onto the surface of glass slides. Sequences were aligned, and the results obtained showed that the products of PCR amplification were the required specific gene fragments of HBV, and HDV. Samples were labeled by Restriction Display PCR (RD-PCR). Gene chip hybridizing signals showed that the specificity and sensitivity required for HBV and HDV detection were satisfied. Using PCR amplified products to construct gene chips for the simultaneous clinical diagnosis of HBV and HDV resulted in a quick, simple, and effective method. We conclude that the DNA microarray assay system might be useful as a diagnostic technique in the clinical laboratory. Further applications of RD-PCR for the sample labeling could speed up microarray multi-virus detection.

Specific detection of salmonella enteritidis using polymerase chain reaction method (PCR을 이용한 salmonella enteritidis의 특이적 검출)

  • 조미영;여용구;김영섭;이정학;이병동
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.3
    • /
    • pp.227-233
    • /
    • 2000
  • Salmonella enteritidis is the most prevalent etiologic agents of foodborne acute gastroenteritis. Direct isolation and identification of S enteritidis are time consuming work and not so highly sensitive. This study was conducted to develop for the specific detection of S enteritidis using polymerase chain reaction(PCR). PCR primers were selected to amplify a 351-base pair(bp) DNA fragment from the salmonella plasmid virulence A(spv A) gene of S enteritidis. With the primers, 351 bp DNA products were amplified from S enteritidis but not from other B, D, Cl serogroup Salmonella spp. It was sensitive to detect up to 40 pg of template DNA by agarose gel electrophoresis. This PCR assay is very rapid and specific method and less time consuming than the standard bacteriological methods.

  • PDF

Rapid Detection of Rifampicin Resistant M. tuberculosis by PCR-SSCP of rpoB Gene in Clinical Specimens (RpoB 유전자 PCR-SSCP법에 의한 임상검체내 Rifampicin 내성 결핵균의 신속진단)

  • Shim, Tae-Sun;Kim, Young-Whan;Lim, Chae-Man;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1245-1255
    • /
    • 1997
  • Background : Rifampicin(RFP) is a key component of the antituberculous short-course chemotherapy and the RFP resistance is a marker of multi-drug resistant(MDR) tuberculosis. RPoB gene encodes the $\beta$-subunit of RNA polymerase of M. tuberculosis which is the target of RFP. And rpoB gene mutations are the cause of RFP resistance of M. tuberculosis. Although several reports showed that PCR-SSCP would be a rapid diagnostic method for identifying the RFP resistance, there were few reports Performed using direct, clinical specimens. So we Performed PCR-SSCP analysis of rpoB gene of M. tuberculosis in direct, clinical specimens. Methods : 75 clinical specimens were collected from patients at Asan Medical Center from June to August 1996. After PCR of IS 6110 fragments, 43 both AFB smear-positive and IS6110 fragment PCR-positive specimens were evaluated. The RFP susceptibility test was referred to the referral laboratory of the Korean Tuberculosis Institute. DNA was extracted by bead beater method. And heminested PCR was done using 0.1ul(1uCi) [$\alpha-^{32}P$]-dCTP. SSCP analysis was done using non-denaturating MDE gel electrophoresis. Results : The results of PCR of IS6110 fragments of M. tuberculosis were positive in 55(73%) cases of 75 AFB smear-positive clinical specimens. Of the 55 specimens, RFP susceptibility was confirmed in only 43 specimens. Of the 43 AFB smear-positive and IS6110 fragment-positive specimens, 29 were RFP susceptible and 14 were RFP resistant. All the RFP susceptible 29 strains showed the same mobility compared with that of RFP sensitive H37Rv in SSCP analysis of ropB gene. And all the other RFP resistant 13 strains showed the different mobility. In other words they showed 100% identical results between PCR-SSCP analysis and traditional susceptibility test. Conclusion : The PCR-sseP analysis of rpoB gene in direct clinical specimens could be used as a rapid diagnostic method for detecting RFP resistant M. tuberculosis.

  • PDF

High-Speed RNA Isolation Using Magnetic Oligo(dT) Beads and Lateral Magnetophoresis (올리고-dT 자성입자와 측면방향 자기영동을 이용한 초고속 RNA 추출 기술)

  • Lee, Hwan-Yong;Han, Song-I;Han, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1309-1316
    • /
    • 2011
  • This paper presents a high-speed RNA microextractor for the direct isolation of RNA from blood lysate using magnetic oligo(dT) beads. The extraction is performed through lateral magnetophoresis, which is induced by a ferromagnetic wire array inlaid. With this RNA microextractor, more than 80% of the magnetic beads could be separated at a flow rate up to 20 ml/h, and the overall extraction procedure was completed within 1 min. The absorbance ratio of RNA to protein(A260/A280) was greater than 1.7, indicating that the extraction technique yields pure RNA. The feasibility of using this technique in reverse transcription polymerase chain reaction procedures was investigated by cDNA synthesis and PCR processes. The results confirmed that the RNA microextractor is a practical device for easy, fast, and high-precision RT-PCR using minimal amounts of reagent.