• 제목/요약/키워드: Direct Numerical Simulation

검색결과 454건 처리시간 0.032초

부력을 받는 확산화염에 대한 수치 시뮬레이션 (Numerical Simulation of Buoyant Diffusion Flame)

  • 오창보;이의주
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.234-237
    • /
    • 2008
  • A direct numerical simulation (DNS) code suitable for the prediction of buoyant jet diffusion flames was developed in this study. The thermodynamic and transport properties were evaluated using CHEMKIN package to enhance the prediction performance of the developed DNS code. A two dimensional simulations were performed for the jet diffusion flames in normal and zero-gravity conditions where the Froude numbers are 5 and infinity, respectively. The simulated buoyant jet diffusion flame in normal gravity showed that the unsteady and dynamic motion although the reynolds number is low (400). It was identified that the flame in normal gravity flickered periodically. The periodic motion of the flame disappeared in zero-gravity condition. The dynamic motion of the buoyant jet diffusion flame could be well understood by comparing the flame structures obtained by the simulations of normal and zero-gravity conditions.

  • PDF

하이브리드 로켓의 저주파불안정성에 미치는 당량비 영향 직접수치해석 (Direct Numerical Simulation of Low Frequency Instability in a Hybrid Rocket with Equivalence Ratio Effects)

  • 최효상;이창진;강상훈
    • 한국추진공학회지
    • /
    • 제23권2호
    • /
    • pp.60-67
    • /
    • 2019
  • 하이브리드로켓의 저주파수 연소불안정(LFI) 특성을 이해하기 위해, 주연소실의 연소 당량비 변화가 500 Hz대역의 압력 및 열방출 진동의 위상변화에 미치는 영향에 대해 직접수치해석을 수행하였다. 주연소실의 당량비 변화는 후연소실로 유입되는 연소가스의 온도 및 조성 변화로 모사하였다. 수치해석 결과, 후향 계단 하류에 와류 생성과 함께 추가적인 연소가 나타나며, 와류가 이동함에 따라 연소 압력 및 반응률의 진동이 관찰되었다. 또한, 유입유동의 온도가 변화하면 압력파의 전파속도도 함께 변화하므로 압력 및 반응률 진동 사이의 위상차가 천이하게 됨을 확인하였다.

해역구조물을 통한 월파의 3차원 수치계산기법의 개발 (Direct 3-D Numerical Simulation of Overtopping on the Coastal Structures)

  • 허동수;김인철
    • 한국해안해양공학회지
    • /
    • 제18권4호
    • /
    • pp.383-389
    • /
    • 2006
  • 소파호안과 같은 해역구조물을 통한 월파량 산정에 수치해석기법을 적용하기 위하여 투과성 구조물의 취급 및 쇄파현상의 재현이 가능한 수치해석기법을 발판으로 하여 쇄파발생으로 인한 기포의 유입과 호안 배후의 월파로 인한 물방울의 자유낙하 및 사면유하 등을 고려할 수 있는 기법을 추가한 새로운 3차원 수치해석기법을 제안하여, 기존의 수리모형실험과 비교함으로써 그 타당성을 검증하였다. 소파호안을 대상으로 Ursell 수($=L^2H/h^3$)가 커질수록 3차원 계산에 의해 얻어지는 월파유량은 증가하였으며 실험결과와도 잘 일치하고 있는 것을 확인하였다. 또한, 월파량 산정에 2차원 및 3차원수치해석기법을 이용할 경우의 차이점에 관하여 논의하였다.

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

직접수치모사를 이용한 난류경계층 내의 거대난류구조 연구 (A Direct Numerical Simulation Study on the very Large-Scale Motion in Turbulent Boundary Layer)

  • 이재화;성형진
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.977-982
    • /
    • 2009
  • Direct numerical simulation (DNS) of a turbulent boundary layer with moderate Reynolds number was performed to scrutinize streamwise-coherence of hairpin packet motions. The Reynolds number based on the momentum thickness (${\theta}_{in}$) and free-stream velocity (U${\infty}$) was varied in the range $Re_{\theta}$=1410${\sim}$2540 which was higher than the previous numerical simulations in the turbulent boundary layer. In order to include the groups of hairpin packets existing in the outer layer, large computational domain was used (more than 50${\delta}_o$, where ${\theta}_o$ is the boundary layer thickness at the inlet in the streamwise domain). Characteristics of packet motions were investigated by using instantaneous flow fields, two-point correlation and conditional average flow fields in xy-plane. The present results showed that a train of hairpin packet motions was propagating coherently along the downstream and these structures induced the very large-scale motions in the turbulent boundary layer.

원판형 드래그펌프의 배기특성에 관한 연구 (A Study on the Pumping Performance of a Disk-type Drag Pump)

  • 황영규;허중식;최욱진
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.860-869
    • /
    • 2000
  • Numerical and experimental investigations are performed for the molecular transition and slip flows in pumping channels of a disk-type drag pump. The flow occurring in the pumping channel develops from the molecular transition to the slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic approach through the use of the direct simulation Monte Carlo method. In the experimental study, the inlet pressures are measured for various outlet pressures in the range of 0.1{\sim}4Torr. From the present study, the numerical results of predicting the performance, obtained by both methods, agree well with the experimental data for the range of Knudsen number $Kn{\leq}0.1$ (i.e., the slip flow regime). But the results from the second method only agree with the experimental data for Kn>0.1(i.e., the molecular transition regime)

Wall function을 이용한 LES code(FDS5)의 벽 근처 유동해석 (The Near-Wall Flow Analysis Using Wall Function in LES Code(FDS5))

  • 장용준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1594-1600
    • /
    • 2011
  • 본 연구에서는 가장 최근에 NIST(National Institute of Standards and Technology)에서 LES(large eddy simulation)기법을 사용하여 개발한 3D 화재유동 해석용 FDS5의 중요한 기능 중 Werner-Wengle wall law의 성능을 평가하기 위하여 평행 평판에서의 유동을 조사하였다. 격자 형성을 위하여 $y^+$ 값은 11 이상으로 유지하도록 하였으며, 총 사용격자는 $32{\times}32{\times}32$를 사용하였다. 입구와 출구에서는 반복(periodic) 경계조건이 주어졌고, 양측면에서는 대칭(symmetry) 경계조건이 주어졌다. 충분히 발달된 난류에서의 유동조건을 조사하기 위하여 Re=10,700을 사용하였다. 시뮬레이션으로 구하여진 결과는 DNS(Direct Numerical Simulation) 결과 및 이론값과 비교하여 분석하였다. 또한 FDS 결과를 RANS의 난류 유동 해석 결과와도 비교하였다.

  • PDF

와동과 상호작용하는 대향류 비예혼합화염의 소염특성 (Extinction in a Counterflow Nonpremixed Flame Interacting with a Vortex)

  • 오창보;이창언
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1401-1411
    • /
    • 2003
  • A two-dimensional direct numerical simulation was performed to investigate the flame structure of CH$_4$$N_2$-air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry were adopted in this simulation. The characteristic vortex and chemical time scales were introduced to quantify and investigate the extinction phenomenon during a flame-vortex interaction. The results showed that fuel- and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex was extinguished at much larger scalar dissipation rate than steady flame. It was also found that the air-side vortex extinguished a flame more rapidly than the fuel-side vortex. Furthermore, it was noted that the degree of unsteady effect experienced by a flame can be investigated by comparing the above two characteristic time scales, and this analysis could give an appropriate reason for the results of the previously reported experiment.

난류경계층내 주유동방향 와구조와 벽압력 변동간의 상관관계 (Relations of Near-Wall Streamwise Vortices to Wall Pressure Fluctuations in a Turbulent Boundary Layer)

  • 성형진;김중년;최정일
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1068-1076
    • /
    • 2001
  • The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.

FROM THE DIRECT NUMERICAL SIMULATION TO SYSTEM CODES - PERSPECTIVE FOR THE MULTI-SCALE ANALYSIS OF LWR THERMALHYDRAULICS

  • Bestion, D.
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.608-619
    • /
    • 2010
  • A multi-scale analysis of water-cooled reactor thermalhydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermalhydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given.